Quotients of \mathbb{G}_a Actions

David R. Finston Brooklyn College CUNY

November 8, 2012

Affine Varieties:

Work over \mathbb{C} although most everything in this section can be formulated for an arbitrary algebraically closed field.

An algebraic set V in \mathbb{C}^n is the collection of common zeros of a subset $S \subset \mathbb{C}[x_1, \ldots, x_n]$ write $V = \mathcal{V}(S)$)

 $V = \mathcal{V}(I)$) where I is the ideal generated by S.

Hilbert Basis Theorem: S can be taken to be finite.

If I is prime then V is called an affine variety.

Given an algebraic set $\boldsymbol{V},$ the set

$$\mathcal{I}(V) = \{ f \in \mathbb{C}[x_1, \dots, x_n] : f(v) = \mathsf{0} forall v \in V \}$$

is an ideal.

Hilbert Nullstellensatz If $V = \mathcal{V}(I)$, then

$$\mathcal{I}(\mathcal{V}) = \bigcup_{j \ge 0} \{ f : f^j \in I \} := \sqrt{I}.$$

If I is prime, then $\mathcal{I}(\mathcal{V}(I)) = I$.

The algebraic notion of primeness:

For ideals I_1, I_2 the product $I_1I_2 \subset I$ implies $I_1 \subset I$ or $I_2 \subset I$

translates to V is irreducible:

For algebraic sets V_1, V_2 if $V = V_1 \cup V_2$ then $V = V_1$ or $V = V_2$.

The algebraic subsets of \mathbb{C}^n satisfy the axioms for the closed sets of a topology, called the **Zariski topology** on \mathbb{C}^n .

V is a variety iff V is an irreducible closed set for the Zariski topology.

Let V be a variety in \mathbb{C}^n with ideal I. The well defined algebraic functions on V are represented by restrictions to V of polynomials functions on \mathbb{C}^n .

 $f|_V = g|_V$ iff $(f - g)|_V \equiv 0$ iff $f - g \in I$ (Hilbert Nullstellensatz).

The ring $\mathcal{O}(V)$ of functions well defined everywhere on V is isomorphic to the **affine (integral) domain** $\mathbb{C}[x_1, \ldots, x_n]/I$.

Its quotient field $\mathbb{C}(V)$ consists of functions defined on some (Zariski) open subset of V.

Equivalence of categories:

Finitely generated \mathbb{C} -algebra domains \iff Complex affine varieties

Algebra homomorphisms \iff Mappings represented coordinate-wise by polynomial functions.

$$A \cong \mathbb{C}[x_1, \ldots, x_n]/I \cong O(\mathcal{V}(I)) \leftrightarrow \text{Spec } A := \mathcal{V}(I) \subset \mathbb{C}^n$$

$$V \cong W$$
 iff $\mathcal{O}(V) \cong \mathcal{O}(W)$

Here $V \cong W$ means the existence of a mapping with two sided inverse.

Cancellation

Example: The cylinder over a variety $V = \mathcal{V}(I) \subset \mathbb{C}^n$ is the variety

$$V \times \mathbb{C} = \mathcal{V}(I\mathbb{C}[x_1, \dots, x_n, x_{n+1}]) \subset \mathbb{C}^{n+1}.$$

$$\mathcal{O}(V \times \mathbb{C}) \cong \mathcal{O}(V)[x_{n+1}]$$

The general question: If $V \times \mathbb{C} \cong W \times \mathbb{C}$ is $V \cong W$? (Equivalently, for affine domains A, B and indeterminate t satisfying $A[t] \cong B[t]$ is $A \cong B$?)

has a negative answer. But

Open Problem: For n>2 if $V \times \mathbb{C} \cong \mathbb{C}^{n+1}$ is $V \cong \mathbb{C}^n$?

Failure of cancellation: The affine varieties $D_n: y^2 - 2x^nz - 1 = 0$ satisfy

1. $D_n \cong D_m$ if and only if n = m

2. $D_n \times \mathbb{C} \cong D_m \times \mathbb{C}$ for every pair (n, m).

The key to understanding both 1) and 2) is that D_n admits a fixed point free \mathbb{G}_a (=(\mathbb{C} , +)) action by automorphisms: $\mathbb{G}_a \times D_n \xrightarrow{\sigma} D_n$:

$$(t,(x,y,z)) \stackrel{\sigma}{\mapsto} (x,y+tx^n,z+ty+\frac{t^2}{2}x^n)$$

It looks exponential.

On $\mathcal{O}(D_n) \cong \mathbb{C}[x, y, z]/(y^2 - 2x^n z - 1)$ the assignment

$$(t,x) \longmapsto x, (t,y) \longmapsto y + tx^n, (t,z) \longmapsto z + ty + \frac{t^2}{2}x^n$$

 \sim

extends to an action $\hat{\sigma}$ of \mathbb{G}_a on $\mathcal{O}(D_n)$ by algebra automorphisms.

 $\delta(f) := \frac{\hat{\sigma}_t(f) - f}{t}|_{t=0} \text{ is the locally nilpotent derivation (LND) } \delta = x^n \frac{\partial}{\partial y} + y \frac{\partial}{\partial z} \text{ of } \mathcal{O}(D_n) \text{ and } \hat{\sigma}_t = \exp(t\delta).$

Tangent vector to \mathbb{G}_a orbit of (a, b, c) is never 0 (no fixed points):

<
$$\delta(x)(a, b, c), \delta(y)(a, b, c), \delta(z)(a, b, c) >=< 0, a^n, b >$$

 $\neq 0 \text{ (recall } b^2 - 2a^nc = 1\text{).}$

For any affine variety V obtain 1-1 correspondence $\hat{\sigma} \to \delta \to \exp(t\delta) = \hat{\sigma}$ between LNDs of $\mathcal{O}(V)$ and \mathbb{G}_a actions on V. For $n \geq 2$ the \mathbb{G}_a action on D_n is essentially unique. More precisely,

 $\operatorname{ker}(\delta) = \mathbb{C}[x]$ for every $\delta \in \operatorname{LND}(\mathcal{O}(D_n))$.

For n = 1 symmetry between x and z shows $\bigcap_{\delta} \ker(\delta) = \mathbb{C}$.

 \cap {ker(δ) : $\delta \in$ LND($\mathcal{O}(V)$ } is an isomorphy invariant of affine varieties (characteristic subalgebra): Makar-Limanov invariant.

Thus $D_1 \ncong D_n$ for $n \ge 2$. The fact that an isomorphism between D_n and D_m would have to carry $\mathbb{C}[x]$ to $\mathbb{C}[x]$ is so restrictive as to exclude any if $m \ne n$.

But why are the cylinders isomorphic?

 D_n has a cover by open subsets for the Zariski topology which are themselves \mathbb{G}_a stable affine varieties:

 $V_+ := D_n - \mathcal{V}(x, y-1), V_- := D_n - \mathcal{V}(x, y+1)$ cover and their complements are \mathbb{G}_a stable since $\sigma_t(0, \pm 1, z) = (0, \pm 1, z \pm t)$.

 $s_+ := \frac{y+1}{x^n} = \frac{2z}{y-1}$ is globally defined on V_+ and $s_- := \frac{y-1}{x^n} = \frac{2z}{y+1}$ is globally defined on V_- . Also y and z can be recovered from x and s_{\pm}

$$\mathcal{O}(D_n)[s_+] = \mathbb{C}[x, s_+] = \mathcal{O}(V_+), \ \mathcal{O}(D_n)[s_-] = \mathbb{C}[x, s_-] = \mathcal{O}(V_-)$$

So $V_{\pm} \cong \mathbb{C}^2$ with coordinates x, s_{\pm} respectively. Moreover,

$$\hat{\sigma}_t s_{\pm} = \frac{\hat{\sigma}_t (y \pm 1)}{\hat{\sigma}_t x^n} = \frac{y \pm 1 + tx^n}{x^n} = s_{\pm} + t$$

 \mathbb{G}_a action on V_+ (resp. V_-) is a simple translation: $\sigma_t(x, s_{\pm}) = (x, s_{\pm} + t)$.

The morphisms of affine varieties $V_{\pm} \stackrel{pr_x}{\to} \mathbb{C}^1$ have fibers parametrized by s_{\pm}

and glue to a morphism $D_n \stackrel{pr_x}{\to} \mathbb{C}^1$ with a disconnected fiber over the origin:

Recall
$$x^n z = y^2 - 1$$
 so that $pr_x^{-1}(0) = \{(0, 1, z)\} \cup \{(0, -1, z)\}.$

Action on D_n is **locally trivial for the Zariski topology** (i.e. locally a translation).

What is its quotient (geometric structure on space of orbits)?

On V_+ (resp. V_-) the space of orbits is identified with \mathbb{C}^1 with coordinate x.

Replace the origin with 2 points 0^{\pm} to obtain the space of orbits as the non-separated scheme

$$\begin{array}{c} & + \\ \vdots \\ & ---- \\ & ---- \\ & ---- \\ & ---- \\ & ---- \\ & ---- \\ & = \mathbb{C} \amalg \mathbb{C} / \{ \alpha \sim \alpha : x \neq \mathbf{0} \} := \widetilde{\mathbb{C}} = \\ & \vdots \\ \mathbb{C}^+ \cup \mathbb{C}^-. \end{array}$$

 $D_n \cong \operatorname{Spec} \mathbb{C}[x, s_+] \amalg \operatorname{Spec} \mathbb{C}[x, s_-] / \{(\alpha, \beta) \sim (\alpha, \beta + \frac{2}{x^n}) : \alpha \neq 0\}.$

 $D_n \xrightarrow{\pi} \widetilde{\mathbb{C}}$ where $\pi|_{V^{\pm}} : V^{\pm} \to \mathbb{C}^{\pm}$ are the two projections.

More precisely, $D_n \xrightarrow{\pi} \widetilde{\mathbb{C}}$ is a (nontrivial) principal \mathbb{G}_a bundle. The gluing data $\frac{2}{x^n} \in \check{H}^1(\widetilde{\mathbb{C}}, \mathcal{O}(\widetilde{\mathbb{C}}))$ a cohomology group that classifies the principal \mathbb{G}_a bundles over $\widetilde{\mathbb{C}}$

 $\widetilde{\mathbb{C}}$ is not affine.

Theorem (Serre) If W is an affine variety then every principal \mathbb{G}_a bundle over W is trivial, i.e.

If $V \to W$ is a **principal** \mathbb{G}_a **bundle** then $V \cong W \times \mathbb{G}_a$ with the group acting trivially on W and by translation on itself.

A scheme X is a space covered by affine varieties $X = \bigcup_{i=1}^{m} X_i$ so that the rings $\mathcal{O}(X_i)$ agree over the intersections of the X_i to get a sheaf of rings.

 \mathbb{C} has the cover by two copies of \mathbb{C} glued over the complement of their origins.

 $\check{H}^1(X, \mathcal{O}(X))$ classifies the principal \mathbb{G}_a bundles $Y \xrightarrow{\pi} X$: For a given affine open cover $X = \bigcup_{i=1}^m X_i$, by Serre,

$$Y_i := \pi^{-1}(X_i) \cong X_i \times \mathbb{G}_a$$
$$\mathcal{O}(Y_i) \cong \mathcal{O}(X_i)[s_i]$$

The $\binom{m}{2}$ tuple $(s_i - s_j)_{i < j} \in Z^1(X.\mathcal{O}(X))$ is a 1-cocycle for Čech cohomology. Coboundaries correspond to the trivial bundle $X \times \mathbb{G}_a$.

Conversely, for an $\binom{m}{2}$ tuple with entries in $\mathcal{O}(X_i \cap X_j)$ the coboundary map measures how the s_i coordinates restrict on overlaps of 3 X'_is . That we have a cocycle says that they agree in every way they can restrict so that $X_i \times \mathbb{G}_a$ glue to a bundle over X.

Serre's theorem is that if X is affine then every cocycle is a coboundary. By the sheaf property, the s_i glue together to a global coordinate s and trivial bundle $\mathcal{O}(Y) = \mathcal{O}(X)[s]$.

Because of the pole at x = 0 in the cocycle $\frac{2}{x^n}$, this is not the case for s_+ and s_- on D_n , hence the **local** in local triviality, i.e. the bundle $D_n \xrightarrow{\pi_n} \widetilde{\mathbb{C}}$ is not trivial.

We can use local triviality and Serre's theorem to construct cancellation counterexamples. Look at the affine variety

$$D_m imes_{\widetilde{\mathbb{C}}} D_n := \{(a,b) \in D_m imes D_n : \pi_m(a) = \pi_n(b)\}.$$

The two projections

are \mathbb{G}_a bundles with cocycles $\frac{2}{x^n} \in \check{H}^1(D_m, \mathcal{O}(D_m))$ and $\frac{2}{x^m} \in \check{H}^1(D_n, \mathcal{O}(D_n))$. These are the base extensions corresponding to the cover of $D_m = V_+^m \cup V_-^m$ glued via $\frac{2}{x^n}$ (resp. $D_n = V_+^n \cup V_-^n$ glued via $\frac{2}{x^m}$).

Danielewski fiber product trick: Since D_m and D_n are affine

$$D_m \times \mathbb{C} \cong D_m \times_{\widetilde{\mathbb{C}}} D_n \cong D_n \times \mathbb{C}$$

We are far removed from \mathbb{C}^n , the $\mathcal{O}(D_n)$ are not even UFDs. There are threefold UFD counterexamples, but again not \mathbb{C}^3 (yet).

\mathbb{G}_a Bundles over a Quasiaffine Quadric Fourfold

Danielewski fiber product trick: If two affine varieties are total spaces of principal \mathbb{G}_a bundles over the same base then they have isomorphic cylinders, so search for locally trivial \mathbb{G}_a actions on a \mathbb{C}^n and on another affine variety X with the same quotient W. Necessarily W will be strictly quasiaffine (i.e. a proper open subset of an affine variety, which has no structure of affine variety itself) otherwise by Serre, \mathbb{C}^n and X are both isomorphic to $W \times \mathbb{C}$.

Take $\delta := x_1 \frac{\partial}{\partial x_2} + y_1 \frac{\partial}{\partial y_2} + (1 + x_1 y_2 - x_2 y_1) \frac{\partial}{\partial z}$ which is a locally nilpotent derivation of $\mathbb{C}[x_1, y_1, x_2, y_2, z]$.

The associated action σ is

$$\sigma_t(a_1, b_1, a_2, b_2, c) = (a_1, b_1, a_2 + ta_1, b_2 + tb_2, c + t(1 + a_1b_2 - a_2b_1))$$

$$\hat{\sigma}_t \frac{x_2}{x_1} = \frac{x_2}{x_1} + t, \ \hat{\sigma}_t \frac{y_2}{y_1} = \frac{y_2}{y_1} + t, \ \hat{\sigma}_t \frac{z}{(1 + x_1y_2 - x_2y_1)} = \frac{z}{(1 + x_1y_2 - x_2y_1)} + t.$$

Obtain local coordinates translated by the action:

$$s_1 := \frac{x_2}{x_1}, \ s_2 := = \frac{y_2}{y_1}, \ s_3 := \frac{z}{(1 + x_1y_2 - x_2y_1)}.$$

For each point x of \mathbb{C}^5 at least one $s_i(x)$ is defined. The action is locally trivial.

The orbit space (geometric quotient) W is the complement of a subvariety of codimension 2 in a smooth affine quadric

$$Y := \mathcal{V}(c_1c_5 - c_2c_4 + c_3(1 + c_3)) \subset \mathbb{C}^5$$

W:= Y - \mathcal{V}(c_1, c_2, (1 + c_3)).

Here the c_i generate the ring of \mathbb{G}_a invariant functions with

$$c_{1} := x_{1}, c_{2} := y_{1}, c_{3} := x_{1}y_{2} - x_{2}y_{1},$$

$$c_{4} := x_{1}z - x_{2}(1 + x_{1}y_{2} - x_{2}y_{1}),$$

$$c_{5} := y_{1}z - y_{2}(1 + x_{1}y_{2} - x_{2}y_{1})$$

By Hartog W is not affine, $\mathcal{O}(W) = \mathcal{O}(Y)$ but $W \subsetneq Y$.

 \boldsymbol{W} has the cover by affine open subsets

$$egin{aligned} W_1 &:= W - \mathcal{V}(c_1) \cong \operatorname{Spec}\,\mathcal{O}(W)[rac{1}{c_1}], \ W_2 &:= W - \mathcal{V}(c_2) \cong \operatorname{Spec}\,\mathcal{O}(W)[rac{1}{c_2}] \ W_3 &:= W - \mathcal{V}(1+c_3) \cong \operatorname{Spec}\,\mathcal{O}(W)[rac{1}{1+c_3}] \end{aligned}$$

The Čech cocycle for the bundle is

$$(s_3 - s_2, s_3 - s_1, s_2 - s_1) = (\frac{c_5}{c_2(1 + c_3)}, \frac{c_4}{c_1(1 + c_3)}, \frac{c_3}{c_1c_2}).$$

Now we need to find other affine varieties admitting a locally trivial \mathbb{G}_a action with quotient W (affine total spaces of \mathbb{G}_a bundles over W).

Work backwards. We want a cancellation context, i.e. a variety X so that $X \times \mathbb{C}^5 \cong X \times_W \mathbb{C}^5 \cong \mathbb{C}^6$.

Suppose we have one. Independent of the affineness of X, because of the affineness of \mathbb{C}^5 the base extension

$$\mathbb{C}^5 \times_W X \cong \mathbb{C}^5 \times \mathbb{C}^1 \cong \mathbf{Spec} \ \mathbb{C}[x_1, y_1, x_2, y_2, z, u]$$

and it inherits the \mathbb{G}_a action $t \cdot (a, \lambda) = (\sigma_t(a), \lambda)$ where $a \in \mathbb{C}^5$ and $\lambda \in \mathbb{C}$. This action is generated by an extension of δ to another locally nilpotent derivation $\hat{\delta}$ of $\mathbb{C}[x_1, y_1, x_2, y_2, z, u]$. A straightforward calculation shows that local nilpotency forces $\hat{\delta}(u) \in \mathbb{C}[x_1, y_1, x_2, y_2, z]$.

If X is affine then $\mathbb{C}^5 \times_W X \cong X \times \mathbb{C}^1$ as a bundle over X. This means that $\mathcal{O}(X \times \mathbb{C}^1) = \mathcal{O}(X)[t], \hat{\delta}(t) \in \mathbb{C}^*$, and $\mathcal{O}(X) = \ker \hat{\delta}$. So $X = \operatorname{Spec} \ker \hat{\delta}$.

Conversely, each extension $\hat{\delta}$ as above gives rise to a \mathbb{G}_a bundle over W in the form of a Čech cocycle for the cover (see this later).

Theorem: There is a one to one correspondence between \mathbb{G}_a bundles over W and extensions $\hat{\delta} = \delta + p(x_1, y_1, x_2, y_2, z) \frac{\partial}{\partial u}$ of δ . The total space X is affine iff $\hat{\delta}(q) = 1$ for some $q \in \mathbb{C}[x_1, y_1, x_2, y_2, z, u]$, and in this case $X = \operatorname{Spec} \ker \hat{\delta} \cong \mathcal{V}(q)$.

Example: The kernel of the extension $\hat{\delta} = \delta - \frac{\partial}{\partial u}$ contains $x_1, y_1, x_2 + ux_1, y_2 + uy_1, z + u(1 + x_1y_2 - x_2y_1)$. Adjoining u to the ring generated by these 5 yields $\mathbb{C}[x_1, y_1, x_2, y_2, z, u]$, so they generate the ker $(\hat{\delta})$ and we recover the total space \mathbb{C}^5 in fact the original action.

Can we construct an example where the total space is affine but not \mathbb{C}^5 ?

Not if $p \in \mathbb{C}[x_1, y_1, x_2, y_2]$.

Example The extensions $\hat{\delta}_n = \delta + x_2^n \frac{\partial}{\partial u}$ correspond to \mathbb{G}_a bundles over W with affine total spaces. Recall that $c_3 = x_1y_2 - x_2y_1$. The regular function

$$s_n = \frac{z(1-c_3^n)}{1+c_3} + \frac{x_2(x_1y_2 - x_2y_1)^n - y_1^n x_2^{n+1}}{x_1} + (n+1)y_1^n u$$

satisfies $\hat{\delta}_n(s_n) = 1$. But s_n is actually a variable of $\mathbb{C}[x_1, y_1, x_2, y_2, z, u]$ (a fact that took me two years to prove) so ker $\hat{\delta} \cong \mathbb{C}^5$, although as a bundle it is not the same as the original.

Can we determine whether the total space is affine without having to solve the PDE $\hat{\delta}(q) = 1$?

Remark: Because W is not affine, the trivial bundle does not have an affine total space.

For any extended derivation $\hat{\delta}$ the entries of the cocycle $(s_3-s_2, s_3-s_1, s_2-s_1)$ for the associated bundle are calculated as

$$s_{2} - s_{1} = \exp(-\frac{x_{2}}{x_{1}})\hat{\delta}(u) - \exp(-\frac{y_{2}}{y_{1}})\hat{\delta}(u)$$
$$= \frac{h}{c_{1}^{k}c_{2}^{i}}$$

where $h \in \mathcal{O}(W)$ and i, k are positive integers (similarly for $s_3 - s_2, s_3 - s_1$ but these don't actually matter).

Theorem Let Z be the total space for a nontrivial \mathbb{G}_a bundle over W and let $\frac{h}{c_1^k c_2^i}$ be as above, with the further hypothesis that $h \notin (c_1, c_2)\mathcal{O}(Y)$. Then Z is affine if and only h restricts to a nonzero constant on H = Y - W, i.e. on the zero locus of $(c_1, c_2, c_3 + 1)$ in Y. The bundle is trivial if and only if $\hat{\delta}(u) \in im(\delta)$ (which can be checked algorithmically). The affineness criterion is very similar to why D_n is an affine total space for a bundle over a non-separated scheme. The cocycle (gluing data) $\frac{2}{x^n}$ has a pole over what prevents the base space from being a variety. Similarly, the condition on h gives a pole over what prevents the base space W from being affine (essentially the codimension 2 condition on Y - W).

Example The extended derivation $\delta + zp(x_1, y_1, x_2, y_2, z)\frac{\partial}{\partial u}$ does not yield an affine total space by this theorem. A calculation shows that for $\frac{h}{c_1^k c_2^i}$, the hvanishes identically on the zero locus of (c_1, c_2, c_3+1) . However, again by the theorem, the extended derivation $\delta + zp(x_1, y_1, x_2, y_2, z) + q(x_1, y_1, x_2, y_2, z)\frac{\partial}{\partial u}$ will yield an affine total space provided $\delta + q(x_1, y_1, x_2, y_2, z)\frac{\partial}{\partial u}$ does. So this is where to look for cancellation counterexamples.