Quotients of \mathbb{G}_{a} Actions

David R. Finston
Brooklyn College CUNY

November 8, 2012

Affine Varieties:

Work over \mathbb{C} although most everything in this section can be formulated for an arbitrary algebraically closed field.

An algebraic set V in \mathbb{C}^{n} is the collection of common zeros of a subset $S \subset$ $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ write $\left.V=\mathcal{V}(S)\right)$
$V=\mathcal{V}(I))$ where I is the ideal generated by S.

Hilbert Basis Theorem: S can be taken to be finite.

If I is prime then V is called an affine variety.

Given an algebraic set V, the set

$$
\mathcal{I}(V)=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]: f(v)=0 \text { forallv } \in V\right\}
$$

is an ideal.

Hilbert Nullstellensatz If $V=\mathcal{V}(I)$, then

$$
\mathcal{I}(\mathcal{V})=\cup_{j \geq 0}\left\{f: f^{j} \in I\right\}:=\sqrt{I}
$$

If I is prime, then $\mathcal{I}(\mathcal{V}(I))=I$.

The algebraic notion of primeness:

For ideals I_{1}, I_{2} the product $I_{1} I_{2} \subset I$ implies $I_{1} \subset I$ or $I_{2} \subset I$
translates to V is irreducible:

For algebraic sets V_{1}, V_{2} if $V=V_{1} \cup V_{2}$ then $V=V_{1}$ or $V=V_{2}$.

The algebraic subsets of \mathbb{C}^{n} satisfy the axioms for the closed sets of a topology, called the Zariski topology on \mathbb{C}^{n}.
V is a variety iff V is an irreducible closed set for the Zariski topology.

Let V be a variety in \mathbb{C}^{n} with ideal I. The well defined algebraic functions on V are represented by restrictions to V of polynomials functions on \mathbb{C}^{n}.
$\left.f\right|_{V}=\left.g\right|_{V}$ iff $\left.(f-g)\right|_{V} \equiv 0$ iff $f-g \in I$ (Hilbert Nullstellensatz).

The ring $\mathcal{O}(V)$ of functions well defined everywhere on V is isomorphic to the affine (integral) domain $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I$.

Its quotient field $\mathbb{C}(V)$ consists of functions defined on some (Zariski) open subset of V.

Equivalence of categories:

Finitely generated \mathbb{C}-algebra domains \Longleftrightarrow Complex affine varieties

Algebra homomorphisms \Longleftrightarrow Mappings represented coordinate-wise by polynomial functions.

$$
A \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I \cong O(\mathcal{V}(I)) \leftrightarrow \mathbf{S p e c} A:=\mathcal{V}(I) \subset \mathbb{C}^{n}
$$

$$
V \cong W \text { iff } \mathcal{O}(V) \cong \mathcal{O}(W)
$$

Here $V \cong W$ means the existence of a mapping with two sided inverse.

Cancellation

Example: The cylinder over a variety $V=\mathcal{V}(I) \subset \mathbb{C}^{n}$ is the variety

$$
\begin{aligned}
V \times \mathbb{C} & =\mathcal{V}\left(I \mathbb{C}\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]\right) \subset \mathbb{C}^{n+1} \\
\mathcal{O}(V \times \mathbb{C}) & \cong \mathcal{O}(V)\left[x_{n+1}\right]
\end{aligned}
$$

The general question: If $V \times \mathbb{C} \cong W \times \mathbb{C}$ is $V \cong W$? (Equivalently, for affine domains A, B and indeterminate t satisfying $A[t] \cong B[t]$ is $A \cong B$?)
has a negative answer. But

Open Problem: For $\mathbf{n}>\mathbf{2}$ if $V \times \mathbb{C} \cong \mathbb{C}^{n+1}$ is $V \cong \mathbb{C}^{n}$?

Failure of cancellation: The affine varieties $D_{n}: y^{2}-2 x^{n} z-1=0$ satisfy

1. $D_{n} \cong D_{m}$ if and only if $n=m$
2. $D_{n} \times \mathbb{C} \cong D_{m} \times \mathbb{C}$ for every pair (n, m).

The key to understanding both 1) and 2) is that D_{n} admits a fixed point free $\mathbb{G}_{a}(=(\mathbb{C},+))$ action by automorphisms: $\mathbb{G}_{a} \times D_{n} \xrightarrow{\sigma} D_{n}:$

$$
(t,(x, y, z)) \stackrel{\sigma}{\mapsto}\left(x, y+t x^{n}, z+t y+\frac{t^{2}}{2} x^{n}\right)
$$

It looks exponential.

On $\mathcal{O}\left(D_{n}\right) \cong \mathbb{C}[x, y, z] /\left(y^{2}-2 x^{n} z-1\right)$ the assignment

$$
(t, x) \longmapsto x,(t, y) \longmapsto y+t x^{n},(t, z) \longmapsto z+t y+\frac{t^{2}}{2} x^{n}
$$

extends to an action $\hat{\sigma}$ of \mathbb{G}_{a} on $\mathcal{O}\left(D_{n}\right)$ by algebra automorphisms.
$\delta(f):=\left.\frac{\hat{\sigma}_{t}(f)-f}{t}\right|_{t=0}$ is the locally nilpotent derivation (LND) $\delta=x^{n} \frac{\partial}{\partial y}+$ $y \frac{\partial}{\partial z}$ of $\mathcal{O}\left(D_{n}\right)$ and $\hat{\sigma}_{t}=\exp (t \delta)$.

Tangent vector to \mathbb{G}_{a} orbit of (a, b, c) is never 0 (no fixed points):

$$
\begin{aligned}
& <\delta(x)(a, b, c), \delta(y)(a, b, c), \delta(z)(a, b, c)>=<0, a^{n}, b> \\
& \neq 0\left(\text { recall } b^{2}-2 a^{n} c=1\right)
\end{aligned}
$$

For any affine variety V obtain 1-1 correspondence $\hat{\sigma} \rightarrow \delta \rightarrow \exp (t \delta)=\hat{\sigma}$ between LNDs of $\mathcal{O}(V)$ and \mathbb{G}_{a} actions on V.

For $n \geq 2$ the \mathbb{G}_{a} action on D_{n} is essentially unique. More precisely,

$$
\operatorname{ker}(\delta)=\mathbb{C}[x] \text { for every } \delta \in \operatorname{LND}\left(\mathcal{O}\left(D_{n}\right)\right)
$$

For $n=1$ symmetry between x and z shows $\bigcap_{\delta} \operatorname{ker}(\delta)=\mathbb{C}$.
$\cap\{\operatorname{ker}(\delta): \delta \in \operatorname{LND}(\mathcal{O}(V)\}$ is an isomorphy invariant of affine varieties (characteristic subalgebra): Makar-Limanov invariant.

Thus $D_{1} \not \neq D_{n}$ for $n \geq 2$. The fact that an isomorphism between D_{n} and D_{m} would have to carry $\mathbb{C}[x]$ to $\mathbb{C}[x]$ is so restrictive as to exclude any if $m \neq n$.

But why are the cylinders isomorphic?
D_{n} has a cover by open subsets for the Zariski topology which are themselves \mathbb{G}_{a} stable affine varieties:
$V_{+}:=D_{n}-\mathcal{V}(x, y-1), V_{-}:=D_{n}-\mathcal{V}(x, y+1)$ cover and their complements are \mathbb{G}_{a} stable since $\sigma_{t}(0, \pm 1, z)=(0, \pm 1, z \pm t)$.
$s_{+}:=\frac{y+1}{x^{n}}=\frac{2 z}{y-1}$ is globally defined on V_{+}and $s_{-}:=\frac{y-1}{x^{n}}=\frac{2 z}{y+1}$ is globally defined on V_{-}. Also y and z can be recovered from x and $s_{ \pm}$
$\mathcal{O}\left(D_{n}\right)\left[s_{+}\right]=\mathbb{C}\left[x, s_{+}\right]=\mathcal{O}\left(V_{+}\right), \mathcal{O}\left(D_{n}\right)\left[s_{-}\right]=\mathbb{C}\left[x, s_{-}\right]=\mathcal{O}\left(V_{-}\right)$
So $V_{ \pm} \cong \mathbb{C}^{2}$ with coordinates $x, s_{ \pm}$respectively. Moreover,

$$
\hat{\sigma}_{t} s_{ \pm}=\frac{\hat{\sigma}_{t}(y \pm 1)}{\hat{\sigma}_{t} x^{n}}=\frac{y \pm 1+t x^{n}}{x^{n}}=s_{ \pm}+t
$$

\mathbb{G}_{a} action on $V_{+}\left(\right.$resp. $\left.V_{-}\right)$is a simple translation: $\sigma_{t}\left(x, s_{ \pm}\right)=\left(x, s_{ \pm}+t\right)$.
The morphisms of affine varieties $V_{ \pm} \xrightarrow{p r_{x}} \mathbb{C}^{1}$ have fibers parametrized by $s_{ \pm}$ and glue to a morphism $D_{n} \xrightarrow{p r_{x}} \mathbb{C}^{1}$ with a disconnected fiber over the origin:

Recall $x^{n} z=y^{2}-1$ so that $\operatorname{pr}_{x}^{-1}(0)=\{(0,1, z)\} \cup\{(0,-1, z)\}$.
Action on D_{n} is locally trivial for the Zariski topology (i.e. locally a translation).

What is its quotient (geometric structure on space of orbits)?

On $V_{+}\left(\right.$resp. $\left.V_{-}\right)$the space of orbits is identified with \mathbb{C}^{1} with coordinate x.

Replace the origin with 2 points $0^{ \pm}$to obtain the space of orbits as the nonseparated scheme
$\stackrel{+}{+------\quad-------}=\mathbb{C} \amalg \mathbb{C} /\{\alpha \sim \alpha: x \neq 0\}:=\widetilde{\mathbb{C}}=$
$\mathbb{C}^{+} \cup \mathbb{C}^{-}$.
$D_{n} \cong$ Spec $\mathbb{C}\left[x, s_{+}\right] \amalg \operatorname{Spec} \mathbb{C}\left[x, s_{-}\right] /\left\{(\alpha, \beta) \sim\left(\alpha, \beta+\frac{2}{x^{n}}\right): \alpha \neq 0\right\}$.
$D_{n} \xrightarrow{\pi} \widetilde{\mathbb{C}}$ where $\left.\pi\right|_{V^{ \pm}}: V^{ \pm} \rightarrow \mathbb{C}^{ \pm}$are the two projections.

More precisely, $D_{n} \xrightarrow{\pi} \widetilde{\mathbb{C}}$ is a (nontrivial) principal \mathbb{G}_{a} bundle. The gluing data $\frac{2}{x^{n}} \in \check{H}^{1}(\widetilde{\mathbb{C}}, \mathcal{O}(\widetilde{\mathbb{C}}))$ a cohomology group that classifies the principal \mathbb{G}_{a} bundles over $\widetilde{\mathbb{C}}$
$\widetilde{\mathbb{C}}$ is not affine.

Theorem (Serre) If W is an affine variety then every principal \mathbb{G}_{a} bundle over W is trivial, i.e.

If $V \rightarrow W$ is a principal \mathbb{G}_{a} bundle then $V \cong W \times \mathbb{G}_{a}$ with the group acting trivially on W and by translation on itself.

A scheme X is a space covered by affine varieties $X=\cup_{i=1}^{m} X_{i}$ so that the rings $\mathcal{O}\left(X_{i}\right)$ agree over the intersections of the X_{i} to get a sheaf of rings.
$\widetilde{\mathbb{C}}$ has the cover by two copies of \mathbb{C} glued over the complement of their origins.
$\check{H}^{1}(X, \mathcal{O}(X))$ classifies the principal \mathbb{G}_{a} bundles $Y \xrightarrow{\pi} X:$ For a given affine open cover $X=\cup_{i=1}^{m} X_{i}$, by Serre,

$$
\begin{aligned}
Y_{i} & :=\pi^{-1}\left(X_{i}\right) \cong X_{i} \times \mathbb{G}_{a} \\
\mathcal{O}\left(Y_{i}\right) & \cong \mathcal{O}\left(X_{i}\right)\left[s_{i}\right]
\end{aligned}
$$

The $\binom{m}{2}$ tuple $\left(s_{i}-s_{j}\right)_{i<j} \in Z^{1}(X . O(X))$ is a 1-cocycle for Čech cohomology. Coboundaries correspond to the trivial bundle $X \times \mathbb{G}_{a}$.

Conversely, for an $\binom{m}{2}$ tuple with entries in $\mathcal{O}\left(X_{i} \cap X_{j}\right)$ the coboundary map measures how the s_{i} coordinates restrict on overlaps of $3 X_{i}^{\prime} s$. That we have a cocycle says that they agree in every way they can restrict so that $X_{i} \times \mathbb{G}_{a}$ glue to a bundle over X.

Serre's theorem is that if X is affine then every cocycle is a coboundary. By the sheaf property, the s_{i} glue together to a global coordinate s and trivial bundle $\mathcal{O}(Y)=\mathcal{O}(X)[s]$.

Because of the pole at $x=0$ in the cocycle $\frac{2}{x^{n}}$, this is not the case for s_{+}and s_{-}on D_{n}, hence the local in local triviality, i.e. the bundle $D_{n} \xrightarrow{\pi_{n}} \widetilde{\mathbb{C}}$ is not trivial.

We can use local triviality and Serre's theorem to construct cancellation counterexamples.

Look at the affine variety

$$
D_{m} \times_{\widetilde{\mathbb{C}}} D_{n}:=\left\{(a, b) \in D_{m} \times D_{n}: \pi_{m}(a)=\pi_{n}(b)\right\}
$$

The two projections

are \mathbb{G}_{a} bundles with cocycles $\frac{2}{x^{n}} \in \check{H}^{1}\left(D_{m}, \mathcal{O}\left(D_{m}\right)\right)$ and $\frac{2}{x^{m}} \in \check{H}^{1}\left(D_{n}, \mathcal{O}\left(D_{n}\right)\right.$. These are the base extensions corresponding to the cover of $D_{m}=V_{+}^{m} \cup V_{-}^{m}$ glued via $\frac{2}{x^{n}}\left(\right.$ resp. $D_{n}=V_{+}^{n} \cup V_{-}^{n}$ glued via $\left.\frac{2}{x^{m}}\right)$.

Danielewski fiber product trick: Since D_{m} and D_{n} are affine

$$
D_{m} \times \mathbb{C} \cong D_{m} \times_{\widetilde{\mathbb{C}}} D_{n} \cong D_{n} \times \mathbb{C}
$$

We are far removed from \mathbb{C}^{n}, the $\mathcal{O}\left(D_{n}\right)$ are not even UFDs. There are threefold UFD counterexamples, but again not \mathbb{C}^{3} (yet).

\mathbb{G}_{a} Bundles over a Quasiaffine Quadric Fourfold

Danielewski fiber product trick: If two affine varieties are total spaces of principal \mathbb{G}_{a} bundles over the same base then they have isomorphic cylinders, so search for locally trivial \mathbb{G}_{a} actions on a \mathbb{C}^{n} and on another affine variety X with the same quotient W. Necessarily W will be strictly quasiaffine (i.e. a proper open subset of an affine variety, which has no structure of affine variety itself) otherwise by Serre, \mathbb{C}^{n} and X are both isomorphic to $W \times \mathbb{C}$.

Take $\delta:=x_{1} \frac{\partial}{\partial x_{2}}+y_{1} \frac{\partial}{\partial y_{2}}+\left(1+x_{1} y_{2}-x_{2} y_{1}\right) \frac{\partial}{\partial z}$ which is a locally nilpotent derivation of $\mathbb{C}\left[x_{1}, y_{1}, x_{2}, y_{2}, z\right]$.

The associated action σ is
$\sigma_{t}\left(a_{1}, b_{1}, a_{2}, b_{2}, c\right)=\left(a_{1}, b_{1}, a_{2}+t a_{1}, b_{2}+t b_{2}, c+t\left(1+a_{1} b_{2}-a_{2} b_{1}\right)\right)$
$\hat{\sigma}_{t} \frac{x_{2}}{x_{1}}=\frac{x_{2}}{x_{1}}+t, \hat{\sigma}_{t} \frac{y_{2}}{y_{1}}=\frac{y_{2}}{y_{1}}+t, \hat{\sigma}_{t} \frac{z}{\left(1+x_{1} y_{2}-x_{2} y_{1}\right)}=\frac{z}{\left(1+x_{1} y_{2}-x_{2} y_{1}\right)}+t$.
Obtain local coordinates translated by the action:

$$
s_{1}:=\frac{x_{2}}{x_{1}}, s_{2}:==\frac{y_{2}}{y_{1}}, s_{3}:=\frac{z}{\left(1+x_{1} y_{2}-x_{2} y_{1}\right)}
$$

For each point x of \mathbb{C}^{5} at least one $s_{i}(x)$ is defined. The action is locally trivial.

The orbit space (geometric quotient) W is the complement of a subvariety of codimension 2 in a smooth affine quadric

$$
\begin{aligned}
Y & :=\mathcal{V}\left(c_{1} c_{5}-c_{2} c_{4}+c_{3}\left(1+c_{3}\right)\right) \subset \mathbb{C}^{5} \\
W & :=Y-\mathcal{V}\left(c_{1}, c_{2},\left(1+c_{3}\right)\right)
\end{aligned}
$$

Here the c_{i} generate the ring of \mathbb{G}_{a} invariant functions with

$$
\begin{aligned}
c_{1} & :=x_{1}, c_{2}:=y_{1}, c_{3}:=x_{1} y_{2}-x_{2} y_{1} \\
c_{4} & :=x_{1} z-x_{2}\left(1+x_{1} y_{2}-x_{2} y_{1}\right) \\
c_{5} & :=y_{1} z-y_{2}\left(1+x_{1} y_{2}-x_{2} y_{1}\right)
\end{aligned}
$$

By Hartog W is not affine, $\mathcal{O}(W)=\mathcal{O}(Y)$ but $W \subsetneq Y$.
W has the cover by affine open subsets

$$
\begin{aligned}
& W_{1}:=W-\mathcal{V}\left(c_{1}\right) \cong \operatorname{Spec} \mathcal{O}(W)\left[\frac{1}{c_{1}}\right] \\
& W_{2}:=W-\mathcal{V}\left(c_{2}\right) \cong \operatorname{Spec} \mathcal{O}(W)\left[\frac{1}{c_{2}}\right] \\
& W_{3}:=W-\mathcal{V}\left(1+c_{3}\right) \cong \operatorname{Spec} \mathcal{O}(W)\left[\frac{1}{1+c_{3}}\right]
\end{aligned}
$$

The Čech cocycle for the bundle is

$$
\left(s_{3}-s_{2}, s_{3}-s_{1}, s_{2}-s_{1}\right)=\left(\frac{c_{5}}{c_{2}\left(1+c_{3}\right)}, \frac{c_{4}}{c_{1}\left(1+c_{3}\right)}, \frac{c_{3}}{c_{1} c_{2}}\right)
$$

Now we need to find other affine varieties admitting a locally trivial \mathbb{G}_{a} action with quotient W (affine total spaces of \mathbb{G}_{a} bundles over W).

Work backwards. We want a cancellation context, i.e. a variety X so that $X \times \mathbb{C}^{5} \cong X \times{ }_{W} \mathbb{C}^{5} \cong \mathbb{C}^{6}$.

Suppose we have one. Independent of the affineness of X, because of the affineness of \mathbb{C}^{5} the base extension

$$
\mathbb{C}^{5} \times{ }_{W} X \cong \mathbb{C}^{5} \times \mathbb{C}^{1} \cong \operatorname{Spec} \mathbb{C}\left[x_{1}, y_{1}, x_{2}, y_{2}, z, u\right]
$$

and it inherits the \mathbb{G}_{a} action $t \cdot(a, \lambda)=\left(\sigma_{t}(a), \lambda\right)$ where $a \in \mathbb{C}^{5}$ and $\lambda \in$ \mathbb{C}. This action is generated by an extension of δ to another locally nilpotent derivation $\hat{\delta}$ of $\mathbb{C}\left[x_{1}, y_{1}, x_{2}, y_{2}, z, u\right]$. A straightforward calculation shows that local nilpotency forces $\hat{\delta}(u) \in \mathbb{C}\left[x_{1}, y_{1}, x_{2}, y_{2}, z\right]$.

If X is affine then $\mathbb{C}^{5} \times_{W} X \cong \times \mathbb{C}^{1}$ as a bundle over X. This means that $\mathcal{O}\left(X \times \mathbb{C}^{1}\right)=\mathcal{O}(X)[t], \hat{\delta}(t) \in \mathbb{C}^{*}$, and $\mathcal{O}(X)=\operatorname{ker} \hat{\delta}$. So $X=$ Spec $\operatorname{ker} \hat{\delta}$.

Conversely, each extension $\hat{\delta}$ as above gives rise to a \mathbb{G}_{a} bundle over W in the form of a Čech cocycle for the cover (see this later).

Theorem: There is a one to one correspondence between \mathbb{G}_{a} bundles over W and extensions $\hat{\delta}=\delta+p\left(x_{1}, y_{1}, x_{2}, y_{2}, z\right) \frac{\partial}{\partial u}$ of δ. The total space X is affine iff $\hat{\delta}(q)=1$ for some $q \in \mathbb{C}\left[x_{1}, y_{1}, x_{2}, y_{2}, z, u\right]$, and in this case $X=$ Spec $\operatorname{ker} \hat{\delta} \cong \mathcal{V}(q)$.

Example: The kernel of the extension $\hat{\delta}=\delta-\frac{\partial}{\partial u}$ contains $x_{1}, y_{1}, x_{2}+u x_{1}$, $y_{2}+u y_{1}, z+u\left(1+x_{1} y_{2}-x_{2} y_{1}\right)$. Adjoining u to the ring generated by these 5 yields $\mathbb{C}\left[x_{1}, y_{1}, x_{2}, y_{2}, z, u\right]$, so they generate the $\operatorname{ker}(\hat{\delta})$ and we recover the total space \mathbb{C}^{5} in fact the original action.

Can we construct an example where the total space is affine but not \mathbb{C}^{5} ?

Not if $p \in \mathbb{C}\left[x_{1}, y_{1}, x_{2}, y_{2}\right]$.

Example The extensions $\hat{\delta}_{n}=\delta+x_{2}^{n} \frac{\partial}{\partial u}$ correspond to \mathbb{G}_{a} bundles over W with affine total spaces. Recall that $c_{3}=x_{1} y_{2}-x_{2} y_{1}$. The regular function

$$
s_{n}=\frac{z\left(1-c_{3}^{n}\right)}{1+c_{3}}+\frac{x_{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)^{n}-y_{1}^{n} x_{2}^{n+1}}{x_{1}}+(n+1) y_{1}^{n} u
$$

satisfies $\hat{\delta}_{n}\left(s_{n}\right)=1$. But s_{n} is actually a variable of $\mathbb{C}\left[x_{1}, y_{1}, x_{2}, y_{2}, z, u\right]$ (a fact that took me two years to prove) so $\operatorname{ker} \hat{\delta} \cong \mathbb{C}^{5}$, although as a bundle it is not the same as the original.

Can we determine whether the total space is affine without having to solve the $\operatorname{PDE} \hat{\delta}(q)=1 ?$

Remark: Because W is not affine, the trivial bundle does not have an affine total space.

For any extended derivation $\hat{\delta}$ the entries of the cocycle $\left(s_{3}-s_{2}, s_{3}-s_{1}, s_{2}-s_{1}\right)$ for the associated bundle are calculated as

$$
\begin{aligned}
s_{2}-s_{1} & =\exp \left(-\frac{x_{2}}{x_{1}}\right) \hat{\delta}(u)-\exp \left(-\frac{y_{2}}{y_{1}}\right) \hat{\delta}(u) \\
& =\frac{h}{c_{1}^{k} c_{2}^{i}}
\end{aligned}
$$

where $h \in \mathcal{O}(W)$ and i, k are positive integers (similarly for $s_{3}-s_{2}, s_{3}-s_{1}$ but these don't actually matter).

Theorem Let Z be the total space for a nontrivial \mathbb{G}_{a} bundle over W and let $\frac{h}{c_{1}^{k} c_{2}^{i}}$ be as above, with the further hypothesis that $h \notin\left(c_{1}, c_{2}\right) \mathcal{O}(Y)$. Then Z is affine if and only h restricts to a nonzero constant on $H=Y-W$, i.e. on the zero locus of $\left(c_{1}, c_{2}, c_{3}+1\right)$ in Y. The bundle is trivial if and only if $\hat{\delta}(u) \in i m(\delta)$ (which can be checked algorithmically).

The affineness criterion is very similar to why D_{n} is an affine total space for a bundle over a non-separated scheme. The cocycle (gluing data) $\frac{2}{x^{n}}$ has a pole over what prevents the base space from being a variety. Similarly, the condition on h gives a pole over what prevents the base space W from being affine (essentially the codimension 2 condition on $Y-W$).

Example The extended derivation $\delta+z p\left(x_{1}, y_{1}, x_{2}, y_{2}, z\right) \frac{\partial}{\partial u}$ does not yield an affine total space by this theorem. A calculation shows that for $\frac{h}{c_{1}^{k} c_{2}^{i}}$, the h vanishes identically on the zero locus of $\left(c_{1}, c_{2}, c_{3}+1\right)$). However, again by the theorem, the extended derivation $\delta+z p\left(x_{1}, y_{1}, x_{2}, y_{2}, z\right)+q\left(x_{1}, y_{1}, x_{2}, y_{2}, z\right) \frac{\partial}{\partial u}$ will yield an affine total space provided $\delta+q\left(x_{1}, y_{1}, x_{2}, y_{2}, z\right) \frac{\partial}{\partial u}$ does. So this is where to look for cancellation counterexamples.

Maybe in two years????????????

