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A¢ ne Varieties:

Work over C although most everything in this section can be formulated for an
arbitrary algebraically closed �eld.

An algebraic set V in Cn is the collection of common zeros of a subset S �
C[x1; : : : ; xn] write V = V(S))

V = V(I)) where I is the ideal generated by S.

Hilbert Basis Theorem: S can be taken to be �nite.

If I is prime then V is called an a¢ ne variety.



Given an algebraic set V , the set

I(V ) = ff 2 C[x1; : : : ; xn] : f(v) = 0forallv 2 V g

is an ideal.

Hilbert Nullstellensatz If V = V(I); then

I(V) = [j�0ff : f
j 2 Ig :=

p
I:

If I is prime, then I(V(I)) = I:



The algebraic notion of primeness:

For ideals I1; I2 the product I1I2 � I implies I1 � I or I2 � I

translates to V is irreducible:

For algebraic sets V1; V2 if V = V1 [ V2 then V = V1 or V = V2 .

The algebraic subsets of Cn satisfy the axioms for the closed sets of a topology,
called the Zariski topology on Cn:

V is a variety i¤ V is an irreducible closed set for the Zariski topology.



Let V be a variety in Cn with ideal I: The well de�ned algebraic functions on
V are represented by restrictions to V of polynomials functions on Cn:

f jV = gjV i¤ (f � g)jV � 0 i¤ f � g 2 I (Hilbert Nullstellensatz).

The ring O(V ) of functions well de�ned everywhere on V is isomorphic to the
a¢ ne (integral) domain C[x1; : : : ; xn]=I:

Its quotient �eld C(V ) consists of functions de�ned on some (Zariski) open
subset of V:



Equivalence of categories:

Finitely generated C�algebra domains () Complex a¢ ne varieties

Algebra homomorphisms() Mappings represented coordinate-wise by poly-
nomial functions.

A �= C[x1; : : : ; xn]=I �= O(V(I))$ Spec A := V(I) � Cn

V �=W i¤ O(V ) �= O(W )

Here V �=W means the existence of a mapping with two sided inverse.



Cancellation

Example: The cylinder over a variety V = V(I) � Cn is the variety

V � C = V(IC[x1; : : : ; xn; xn+1]) � Cn+1:
O(V � C) �= O(V )[xn+1]

The general question: If V � C �=W � C is V �=W? (Equivalently, for a¢ ne
domains A;B and indeterminate t satisfying A[t] �= B[t] is A �= B?)

has a negative answer. But

Open Problem: For n>2 if V � C �= Cn+1 is V �= Cn?



Failure of cancellation: The a¢ ne varieties Dn : y2 � 2xnz � 1 = 0 satisfy

1. Dn �= Dm if and only if n = m

2. Dn � C �= Dm � C for every pair (n;m):

The key to understanding both 1) and 2) is that Dn admits a �xed point free
Ga (=(C;+)) action by automorphisms: Ga �Dn �! Dn :

(t; (x; y; z))
�7! (x; y + txn; z + ty +

t2

2
xn)

It looks exponential.



On O(Dn) �= C[x; y; z]=(y2 � 2xnz � 1) the assignment

(t; x) 7�! x; (t; y) 7�! y + txn; (t; z) 7�! z + ty +
t2

2
xn

extends to an action �̂ of Ga on O(Dn) by algebra automorphisms.

�(f) :=
�̂t(f)�f

t jt=0 is the locally nilpotent derivation (LND) � = xn @@y +

y @@z of O(Dn) and �̂t = exp(t�).

Tangent vector to Ga orbit of (a; b; c) is never 0 (no �xed points):

< �(x)(a; b; c); �(y)(a; b; c); �(z)(a; b; c) >=< 0; an; b >

6= 0 (recall b2 � 2anc = 1):

For any a¢ ne variety V obtain 1-1 correspondence �̂ ! � ! exp(t�) = �̂

between LNDs of O(V ) and Ga actions on V:



For n � 2 the Ga action on Dn is essentially unique. More precisely,

ker(�) = C[x] for every � 2 LND(O(Dn)):

For n = 1 symmetry between x and z shows \
�
ker(�) = C:

\fker(�) : � 2 LND(O(V )g is an isomorphy invariant of a¢ ne varieties (char-
acteristic subalgebra): Makar-Limanov invariant.

Thus D1 � Dn for n � 2: The fact that an isomorphism between Dn and Dm
would have to carry C[x] to C[x] is so restrictive as to exclude any if m 6= n:

But why are the cylinders isomorphic?



Dn has a cover by open subsets for the Zariski topology which are themselves
Ga stable a¢ ne varieties:

V+ := Dn�V(x; y�1); V� := Dn�V(x; y+1) cover and their complements
are Ga stable since �t(0;�1; z) = (0;�1; z � t):

s+ :=
y+1
xn = 2z

y�1 is globally de�ned on V+ and s� :=
y�1
xn = 2z

y+1 is globally
de�ned on V�. Also y and z can be recovered from x and s�

O(Dn)[s+] = C[x; s+] = O(V+); O(Dn)[s�] = C[x; s�] = O(V�)

So V� �= C2 with coordinates x; s� respectively: Moreover,

�̂ts� =
�̂t(y � 1)
�̂txn

=
y � 1 + txn

xn
= s� + t



Ga action on V+ (resp.V�) is a simple translation: �t(x; s�) = (x; s� + t).

The morphisms of a¢ ne varieties V�
prx! C1 have �bers parametrized by s�

and glue to a morphism Dn
prx! C1 with a disconnected �ber over the origin:

Recall xnz = y2 � 1 so that pr�1x (0) = f(0; 1; z)g [ f(0;�1; z)g:

Action on Dn is locally trivial for the Zariski topology (i.e. locally a trans-
lation).

What is its quotient (geometric structure on space of orbits)?



On V+ (resp. V�) the space of orbits is identi�ed with C1 with coordinate x:

Replace the origin with 2 points 0� to obtain the space of orbits as the non-
separated scheme

+�
_______ _______

�
�

= C q C=f� � � : x 6= 0g := eC =

C+ [ C�:

Dn �=Spec C[x; s+]q Spec C[x; s�]=f(�; �) � (�; � + 2
xn) : � 6= 0g:

Dn
�! eC where �jV � : V � ! C� are the two projections.



More precisely, Dn
�! eC is a (nontrivial) principal Ga bundle. The gluing

data 2
xn 2 �H1(eC;O(eC)) a cohomology group that classi�es the principal Ga

bundles over eC
eC is not a¢ ne.
Theorem (Serre) If W is an a¢ ne variety then every principal Ga bundle over
W is trivial, i.e.

If V !W is a principal Ga bundle then V �=W �Ga with the group acting
trivially on W and by translation on itself.



A scheme X is a space covered by a¢ ne varieties X = [mi=1Xi so that the
rings O(Xi) agree over the intersections of the Xi to get a sheaf of rings.

eC has the cover by two copies of C glued over the complement of their origins.
�H1(X;O(X)) classi�es the principal Ga bundles Y �! X : For a given a¢ ne
open cover X = [mi=1Xi, by Serre,

Yi : = ��1(Xi) �= Xi �Ga
O(Yi) �= O(Xi)[si]

The

 
m
2

!
tuple (si� sj)i<j 2 Z1(X:O(X)) is a 1-cocycle for µCech coho-

mology. Coboundaries correspond to the trivial bundle X �Ga:



Conversely, for an

 
m
2

!
tuple with entries in O(Xi \ Xj) the coboundary

map measures how the si coordinates restrict on overlaps of 3 X 0is: That we
have a cocycle says that they agree in every way they can restrict so that
Xi �Ga glue to a bundle over X:

Serre�s theorem is that if X is a¢ ne then every cocycle is a coboundary. By the
sheaf property, the si glue together to a global coordinate s and trivial bundle
O(Y ) = O(X)[s]:

Because of the pole at x = 0 in the cocycle 2
xn , this is not the case for s+ and

s� on Dn; hence the local in local triviality, i.e. the bundle Dn
�n! eC is not

trivial.

We can use local triviality and Serre�s theorem to construct cancellation coun-
terexamples.



Look at the a¢ ne variety

Dm �eCDn := f(a; b) 2 Dm �Dn : �m(a) = �n(b)g:
The two projections

Dm �eCDn
. &

Dm Dn

areGa bundles with cocycles 2xn 2 �H1(Dm;O(Dm)) and 2
xm 2 �H1(Dn;O(Dn).

These are the base extensions corresponding to the cover of Dm = V m+ [ V m�
glued via 2

xn ( resp. Dn = V
n
+ [ V n� glued via 2

xm):

Danielewski �ber product trick: Since Dm and Dn are a¢ ne

Dm � C �=Dm �eCDn �= Dn � C



We are far removed from Cn, the O(Dn) are not even UFDs. There are
threefold UFD counterexamples, but again not C3 (yet).



Ga Bundles over a Quasia¢ ne Quadric Fourfold

Danielewski �ber product trick: If two a¢ ne varieties are total spaces of
principal Ga bundles over the same base then they have isomorphic cylinders,
so search for locally trivial Ga actions on a Cn and on another a¢ ne variety
X with the same quotient W: Necessarily W will be strictly quasia¢ ne (i.e. a
proper open subset of an a¢ ne variety, which has no structure of a¢ ne variety
itself) otherwise by Serre, Cn and X are both isomorphic to W � C:

Take � := x1
@
@x2

+ y1
@
@y2

+ (1 + x1y2� x2y1) @@z which is a locally nilpotent
derivation of C[x1; y1; x2; y2; z]:



The associated action � is

�t(a1; b1; a2; b2; c) = (a1; b1; a2 + ta1; b2 + tb2; c+ t(1 + a1b2 � a2b1))

�̂t
x2
x1
=
x2
x1
+t; �̂t

y2
y1
=
y2
y1
+t; �̂t

z

(1 + x1y2 � x2y1)
=

z

(1 + x1y2 � x2y1)
+t:

Obtain local coordinates translated by the action:

s1 :=
x2
x1
, s2 :==

y2
y1
; s3 :=

z

(1 + x1y2 � x2y1)
:

For each point x of C5 at least one si(x) is de�ned. The action is locally
trivial.



The orbit space (geometric quotient) W is the complement of a subvariety of
codimension 2 in a smooth a¢ ne quadric

Y : = V(c1c5 � c2c4 + c3(1 + c3)) � C5

W : = Y � V(c1; c2; (1 + c3)):

Here the ci generate the ring of Ga invariant functions with

c1 : = x1; c2 := y1; c3 := x1y2 � x2y1;
c4 : = x1z � x2(1 + x1y2 � x2y1);
c5 : = y1z � y2(1 + x1y2 � x2y1)

By Hartog W is not a¢ ne, O(W ) = O(Y ) but W ( Y:



W has the cover by a¢ ne open subsets

W1 : =W � V(c1) �= Spec O(W )[
1

c1
];

W2 : =W � V(c2) �= Spec O(W )[
1

c2
]

W3 : =W � V(1 + c3) �= Spec O(W )[
1

1 + c3
]

The µCech cocycle for the bundle is

(s3 � s2; s3 � s1; s2 � s1) = (
c5

c2( 1 + c3)
;

c4
c1( 1 + c3)

;
c3
c1c2

):



Now we need to �nd other a¢ ne varieties admitting a locally trivial Ga action
with quotient W (a¢ ne total spaces of Ga bundles over W ):

Work backwards. We want a cancellation context, i.e. a variety X so that
X � C5 �= X �W C5 �= C6:

Suppose we have one. Independent of the a¢ neness of X; because of the
a¢ neness of C5 the base extension

C5 �W X �= C5 � C1 �= Spec C[x1; y1; x2; y2; z; u]
and it inherits the Ga action t � (a; �) = (�t(a); �) where a 2 C5 and � 2
C: This action is generated by an extension of � to another locally nilpotent
derivation �̂ of C[x1; y1; x2; y2; z; u]: A straightforward calculation shows that
local nilpotency forces �̂(u) 2 C[x1; y1; x2; y2; z]:

If X is a¢ ne then C5�W X �= X �C1 as a bundle over X: This means that
O(X�C1) = O(X)[t]; �̂(t) 2 C�; and O(X) = ker �̂: So X = Spec ker �̂:



Conversely, each extension �̂ as above gives rise to a Ga bundle over W in the
form of a µCech cocycle for the cover (see this later).

Theorem: There is a one to one correspondence between Ga bundles over
W and extensions �̂ = � + p(x1; y1; x2; y2; z)

@
@u of �: The total space X

is a¢ ne i¤ �̂(q) = 1 for some q 2 C[x1; y1; x2; y2; z; u]; and in this case
X = Spec ker �̂ �= V(q):

Example: The kernel of the extension �̂ = �� @
@u contains x1; y1; x2+ux1;

y2+uy1; z+u(1+x1y2�x2y1): Adjoining u to the ring generated by these
5 yields C[x1; y1; x2; y2; z; u]; so they generate the ker(�̂) and we recover the
total space C5 in fact the original action.

Can we construct an example where the total space is a¢ ne but not C5?



Not if p 2 C[x1; y1; x2; y2]:

Example The extensions �̂n = �+xn2 @@u correspond to Ga bundles overW
with a¢ ne total spaces. Recall that c3 = x1y2 � x2y1: The regular function

sn =
z(1� cn3)
1 + c3

+
x2(x1y2 � x2y1)n � yn1x

n+1
2

x1
+ (n+ 1)yn1u

satis�es �̂n(sn) = 1: But sn is actually a variable of C[x1; y1; x2; y2; z; u] (a
fact that took me two years to prove) so ker �̂ �= C5, although as a bundle it
is not the same as the original.

Can we determine whether the total space is a¢ ne without having to solve the
PDE �̂(q) = 1?

Remark: Because W is not a¢ ne, the trivial bundle does not have an a¢ ne
total space.



For any extended derivation �̂ the entries of the cocycle (s3�s2; s3�s1; s2�s1)
for the associated bundle are calculated as

s2 � s1 = exp(�x2
x1
)�̂(u)� exp(�y2

y1
)�̂(u)

=
h

ck1c
i
2

where h 2 O(W ) and i; k are positive integers (similarly for s3 � s2; s3 � s1
but these don�t actually matter).

Theorem Let Z be the total space for a nontrivial Ga bundle over W and
let h

ck1c
i
2

be as above, with the further hypothesis that h =2 (c1; c2)O(Y ). Then
Z is a¢ ne if and only h restricts to a nonzero constant on H = Y �W; i.e.
on the zero locus of (c1; c2; c3 + 1) in Y . The bundle is trivial if and only if
�̂(u) 2 im(�) (which can be checked algorithmically).



The a¢ neness criterion is very similar to why Dn is an a¢ ne total space for
a bundle over a non-separated scheme. The cocycle (gluing data) 2

xn has a
pole over what prevents the base space from being a variety. Similarly, the
condition on h gives a pole over what prevents the base space W from being
a¢ ne (essentially the codimension 2 condition on Y �W ).

Example The extended derivation �+zp(x1; y1; x2; y2; z) @@udoes not yield
an a¢ ne total space by this theorem. A calculation shows that for h

ck1c
i
2

;the h

vanishes identically on the zero locus of (c1; c2; c3+1)): However, again by the
theorem, the extended derivation �+zp(x1; y1; x2; y2; z)+q(x1; y1; x2; y2; z)

@
@u

will yield an a¢ ne total space provided �+q(x1; y1; x2; y2; z)
@
@u does. So this

is where to look for cancellation counterexamples.

Maybe in two years???????????


