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Affine Varieties:

Work over C although most everything in this section can be formulated for an
arbitrary algebraically closed field.

An algebraic set V' in C™ is the collection of common zeros of a subset S C
Clx1,...,zn] write V = V(S5))

V = V(I)) where I is the ideal generated by S.
Hilbert Basis Theorem: S can be taken to be finite.

If I is prime then V is called an affine variety.



Given an algebraic set V, the set

Z(V)=A{f € Clz1,...,zn] : f(v) =0forallv € V}

Is an ideal.

Hilbert Nullstellensatz If V' = V([I), then

I(V) =Ujsolf: 1 €I} =T
If I is prime, then Z(V(I)) = 1.



The algebraic notion of primeness:

For ideals I7, Io the product I1I> C I implies I{ C T or Io C I

translates to V is irreducible:

For algebraic sets Vi, Vo if V.=V U Vo then V =ViorV =V, .

The algebraic subsets of C" satisfy the axioms for the closed sets of a topology,
called the Zariski topology on C".

V is a variety iff V' is an irreducible closed set for the Zariski topology.



Let V' be a variety in C™ with ideal I. The well defined algebraic functions on
V' are represented by restrictions to V' of polynomials functions on C™.

flv = glv iff (f — g)|yv = 0iff f — g € I (Hilbert Nullstellensatz).

The ring O(V') of functions well defined everywhere on V' is isomorphic to the
affine (integral) domain C[z1,...,zn]/I.

Its quotient field C(V') consists of functions defined on some (Zariski) open
subset of V.



Equivalence of categories:
Finitely generated C—algebra domains <—=- Complex affine varieties

Algebra homomorphisms<—> Mappings represented coordinate-wise by poly-

nomial functions.

A= Clzy,...,zn]/I = O(V(I)) « Spec A :=V(I) c C"

VW iff O(V) & O(W)

Here V' = W means the existence of a mapping with two sided inverse.



Cancellation

Example: The cylinder over a variety V= V() C C" is the variety

V xC = V(IC|xy,...,zn,xpt1]) C crti,
OV xC) = OV)[zni]

The general question: If V' x CZW x Cis V =ZW?7? (Equivalently, for affine
domains A, B and indeterminate t satisfying A[t] = B|[t] is A = B?)

has a negative answer. But

Open Problem: For n>2if V x C =2 C*tlis Vv 2 C™?



Failure of cancellation: The affine varieties D,, : y2 — 2x"z — 1 = 0 satisfy
1. Dp =Dy ifandonly if n =m
2. Dp x C= Dy, x C for every pair (n, m).

The key to understanding both 1) and 2) is that Dy, admits a fixed point free
Ga (=(C,+)) action by automorphisms: Gg x Dy, = Dy, :

t2
(t, (2, y,2)) = (z,y +ta", z + ty + 57")

It looks exponential.



On O(Dy) = Clx, y, 2] /(y? — 22"z — 1) the assignment

+2
(t,z) — z, (t,y) — y + tz", (¢, 2) — z+ty—|—5xn

extends to an action & of G4 on O(Dy,) by algebra automorphisms.

6(f) := MH:O is the locally nilpotent derivation (LND) § = z™-2 +
y% of O(Dp) and 6+ = exp(t9).

Tangent vector to G, orbit of (a, b, c) is never 0 (no fixed points):

< §(z)(a,b,c),d(y)(a, b, c),5(2)(a, b,c) >=<0,a",b >
+ 0 (recall b* — 2a"c = 1).

For any affine variety V' obtain 1-1 correspondence & — § — exp(td) = &
between LNDs of O(V') and G actions on V.



For n > 2 the (G4 action on Dy, is essentially unique. More precisely,

ker(6) = C[x] for every § € LND(O(Dy)).
For n = 1 symmetry between x and z shows r;ker((S) = C.

N{ker(d) : 6 € LND(O(V')} is an isomorphy invariant of affine varieties (char-
acteristic subalgebra): Makar-Limanov invariant.

Thus D1 22 Dy for n > 2. The fact that an isomorphism between Dy, and Dy,
would have to carry C[z] to C[x] is so restrictive as to exclude any if m # n.

But why are the cylinders isomorphic?



Dy, has a cover by open subsets for the Zariski topology which are themselves
Gg stable affine varieties:

Vi = Dp—V(x,y—1), V_ := Dp—V(x,y+1) cover and their complements
are GG stable since 04(0,+1,2) = (0, =1, z = t).

sy =Yt = 21 s globally defined on V. and s := ot 22 is globally

defined on V_. Also y and z can be recovered from x and st

O(Dn)ls+] = Clz, 5] = O(V4), O(Dn)[s-] = Clz,s-] = O(V-)

So Vi =2 C? with coordinates x, s+ respectively. Moreover,

Ge(yx1l) yx1+tx™

o+ x™

= s+ +t



Gyg action on V4 (resp.V_) is a simple translation: o¢(x, s+) = (x, s+ + t).
The morphisms of affine varieties Vi 7% €1 have fibers parametrized by s+
and glue to a morphism Dy, P22 1 with a disconnected fiber over the origin:
Recall 2™z = y? — 1 so that pr; 1(0) = {(0,1,2)} U {(0, —1, 2)}.

Action on Dy, is locally trivial for the Zariski topology (i.e. locally a trans-
lation).

What is its quotient (geometric structure on space of orbits)?



On Vi (resp. V_) the space of orbits is identified with C! with coordinate .

Replace the origin with 2 points 0T to obtain the space of orbits as the non-
separated scheme

— CHC/{a ~ a:z # 0} :=C =

n =Spec C[z, s4]11 Spec Clz, s_1/{(ev, 8) ~ (o, B+ %) : @ # O}.

~

Dy, T, C where 7T|V;|: . VE 5 CT are the two projections.



More precisely, Dy, ™ C is a (nontrivial) principal G4 bundle. The gluing
data aj2_n e H1(C, O(C)) a cohomology group that classifies the principal Gq

bundles over C

~

C is not affine.

Theorem (Serre) If W is an affine variety then every principal G, bundle over

W is trivial, 1.e.

If V' — W is a principal G, bundle then V = W x (4 with the group acting
trivially on W and by translation on itself.



A scheme X is a space covered by affine varieties X = U] ; X, so that the
rings O(X;) agree over the intersections of the X; to get a sheaf of rings.

C has the cover by two copies of C glued over the complement of their origins.

H(X,O(X)) classifies the principal G4 bundles Y 5 X : For a given affine
open cover X = U?leXi, by Serre,

Y, @ =7n YX;) 2 X; xGq
oY;) = O(X;)[si]

The ( 7;7, > tuple (s; — s5)i<j € ZY(X.O(X)) is a 1-cocycle for Cech coho-

mology. Coboundaries correspond to the trivial bundle X x Gq.



2
map measures how the s; coordinates restrict on overlaps of 3 Xz(s. That we

Conversely, for an ( m > tuple with entries in O(X; N X;) the coboundary

have a cocycle says that they agree in every way they can restrict so that
X; X GGg glue to a bundle over X.

Serre’s theorem is that if X is affine then every cocycle is a coboundary. By the
sheaf property, the s; glue together to a global coordinate s and trivial bundle
O(Y) = O(X)][s].

Because of the pole at z = 0 in the cocycle x2—n this is not the case for st and

s_— on Dy, hence the local in local triviality, i.e. the bundle Dy ™ C is not
trivial.

We can use local triviality and Serre's theorem to construct cancellation coun-
terexamples.



Look at the affine variety
The two projections

/ N
D, Dn,

are G4 bundles with cocycles :L,% € HY (D, O(Dy,)) and xim e HY(Dy, O(Dy).

These are the base extensions corresponding to the cover of Dy, = VP U V™

glued via g%n (resp. Dp = VU V™ glued via a%m)

Danielewski fiber product trick: Since D, and D,, are affine



We are far removed from C™, the O(Dy) are not even UFDs. There are

threefold UFD counterexamples, but again not C3 (yet).



G, Bundles over a Quasiaffine Quadric Fourfold

Danielewski fiber product trick: If two affine varieties are total spaces of
principal G4 bundles over the same base then they have isomorphic cylinders,
so search for locally trivial (G4 actions on a C™ and on another affine variety
X with the same quotient W. Necessarily W will be strictly quasiaffine (i.e. a
proper open subset of an affine variety, which has no structure of affine variety
itself) otherwise by Serre, C™ and X are both isomorphic to W x C.

Take § := 331(%2 + ?Jl@iw + (1 +x1y2 — x2y1)% which is a locally nilpotent
derivation of Clx1,y1, T2, Y2, z].



The associated action o is

ot(a1, b1, ap,ba, c) = (a1, by, ap + tay, by + tho, c + t(1 4 a1by — azby))

T ~ Y2 Y z Z

A T2 XD .
ot— = ——+4t, op— = ——+t, o0¢ L.

= +
T T1 Y1 Y1 (1+z1y2 —22y1) (14 z1y2 — z201)
Obtain local coordinates translated by the action:
1 Y1 (1 + z1y2 — 7291)

For each point 2 of C° at least one s;(x) is defined. The action is locally
trivial.



The orbit space (geometric quotient) W is the complement of a subvariety of
codimension 2 in a smooth affine quadric

Y : =V(cic5 — cpcq + c3(1 + ¢3)) € C°
W . =Y — V(Cla Cc2, (1 + 63))'

Here the c¢; generate the ring of (54 invariant functions with

c1 @ =1, € =Y1, C3 = T1Y2 — T2Y1,
cs : =x12 — x2(l + 21Y2 — T2Y1),
cs 1 =12 — y2(1 + x1y2 — x2Y1)

By Hartog W is not affine, O(W) = O(Y) but W C Y.



W has the cover by affine open subsets

Wit =W = V(er) ¥ Spec OW)[],
Wy @ =W —V(cp) = Spec O(W)[é]
W3 : =W —V(1+ c3) = Spec O(W)[l_:c3]
The Cech cocycle for the bundle is
(53— 52,83 — 81,80 — 1) = (— - =)

c2( 1+ c3) c1( 1+ ¢3) cren



Now we need to find other affine varieties admitting a locally trivial GG, action
with quotient W (affine total spaces of G, bundles over W).

Work backwards. We want a cancellation context, i.e. a variety X so that
X x C5> = X xyy C° = CP.

Suppose we have one. Independent of the affineness of X, because of the
affineness of C° the base extension

C°> xy X = C° x C! = Spec Clz1, y1, T2, Y2, 2, U]
and it inherits the G4 action ¢ - (a, \) = (o¢(a),\) where a € C° and X €
C. This action is generated by an extension of § to another locally nilpotent

derivation & of Clz1,y1, 2, Y2, 2, u]. A straightforward calculation shows that
local nilpotency forces 6(u) € Clx1,y1, T2, Y2, 2].

If X is affine then C® xyy X & X x C! as a bundle over X. This means that
O(X xC) = O(X)[t], 6(t) € C*, and O(X) = kerd. So X = Spec ker .



Conversely, each extension § as above gives rise to a (G4 bundle over W in the
form of a Cech cocycle for the cover (see this later).

Theorem: There is a one to one correspondence between G, bundles over
W and extensions 6 = 6+ p(a:l,yl,:vz,yz,z)a%b of §. The total space X
is affine iff 6(¢q) = 1 for some q € Clx1,y1,T2,¥y2, z,u], and in this case
X = Spec keré = V(q).

Example: The kernel of the extension 6 = 5—(% contains x1, Y1, Tot+uxy,
Yo + uyi, z + u(l 4+ x1y2 — x2y1). Adjoining u to the ring generated by these
5 yields C[z1, y1, 2, Y2, 2, u], so they generate the ker(g) and we recover the
total space C? in fact the original action.

Can we construct an example where the total space is affine but not C2?



Not pr € C[$17y17$27y2]'

Example The extensions cASn — 5+m727“(% correspond to G4 bundles over W
with affine total spaces. Recall that c3 = x1y> — xoy1. The regular function

1
~2(1—c3) N To(71y2 — Toy1)" — yPan T

Sn =
1—|—C3 T1

+ (n + 1)yj'u

satisfies Sn(sn) = 1. But sy, is actually a variable of Clx1,y1, 2, Y2, 2,u] (a
fact that took me two years to prove) so ker & = C>, although as a bundle it
Is not the same as the original.

Can we determine whether the total space is affine without having to solve the
PDE 6(q) = 17

Remark: Because W is not affine, the trivial bundle does not have an affine
total space.



For any extended derivation & the entries of the cocycle (s3—sp,83—S1,82—51)
for the associated bundle are calculated as

exp(——2)8(u) — exp(—22)8(u)
. L1 U1

- ki
€162

S2 — S1

where h € O(W) and 1, k are positive integers (similarly for s3 — s9, 83 — s1
but these don't actually matter).

Theorem Let Z be the total space for a nontrivial G4 bundle over W and
let khz be as above, with the further hypothesis that h & (c1,¢c2)O(Y). Then

€1¢2
Z is affine if and only A restricts to a nonzero constant on H =Y — W, i.e.

on the zero locus of (c1,cp,¢3 4+ 1) in Y. The bundle is trivial if and only if
d(u) € im(8) (which can be checked algorithmically).



The affineness criterion is very similar to why Dy, is an affine total space for
a bundle over a non-separated scheme. The cocycle (gluing data) f—n has a
pole over what prevents the base space from being a variety. Similarly, the
condition on h gives a pole over what prevents the base space W from being
affine (essentially the codimension 2 condition on Y — W).

Example The extended derivation d 4+ zp(x1, y1, 2, Y2, z)%does not yield

an affine total space by this theorem. A calculation shows that for khz ,the h
1%
vanishes identically on the zero locus of (c1, ¢, c3+1)). However, again by the

theorem, the extended derivation d+zp(x1, y1, T2, Y2, 2)+q(x1, Y1, T2, Y2, Z)E%
will yield an affine total space provided § + q(x1, y1, €2, Y2, z)% does. So this

Is where to look for cancellation counterexamples.



