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First-order structures (models)

Definition

1. First-order structure is a set with sets of functions, relations
and constants: M = (M, {fi}i∈I , {Rj}j∈J , {ck}k∈K )

2. M is a substructure of N if the functions and relations of M
are restrictions of the corresponding functions and relations on
N, and M and N share the same constants.

3. For ā ∈ Mn, the type of ā, tpM(ā) is {ϕ(x̄) : M |= ϕ(ā)}.
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Elementary extensions

Definition
An extension M ⊆ N is elementary if for all ā ∈

⋃
n∈ω Mn,

tpM(ā) = tpN(ā).

Example

Let M = (ω,<) and N = ({−1} ∪ ω,<). Then the extension
M ⊆ N is not elementary:

tpM(0) 6= tpN(0̄).

In fact, for all ā ∈
⋃

n∈ω ω
n

tpM(ā) 6= tpN(ā).
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tpM(ā) 6= tpN(ā).
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Elementary extensions exist

Theorem
Every infinite model has a proper elementary extension.

Proof.
Let M be infinite, and let T = Th(M, a)a∈M . Let c be a new
constant, and let T ′ = T ∪ {c 6= a : a ∈ M}. By the compactness
theorem T ′ has a model N. Since N |= T , N is an elementary
extension of M. �

Corollary

Every infinite model M has elementary extensions of arbitrary large
cardinalities > |M|.
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Elementary submodels exist

Theorem (Löwenheim, Skolem)

Let N be a model with at most countably many functions and
constants. Then N has an elementary countable submodel.

Example

(R,+,×, 0, 1) has 2ℵ0 countable real closed subfields.
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Rings and field extensions

None of these extensions are elementary:

(N,+,×, 0, 1) ⊆ (Z,+,×, 0, 1) ⊆ (Q,+,×, 0, 1) ⊆

⊆ (R,+,×, 0, 1) ⊆ (C,+,×, 0, 1).

Theorem
N, Z, and Q have 2ℵ0 countable elementary extensions.

Theorem
If R and R′ are real closed fields and R ⊆ R′ , then R ≺ R′

Theorem
If F and F′ are algebraically closed fields and F ⊆ F′, then F ≺ F′.
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An application: automorphisms of C

Proposition

There is a nontrivial α ∈ Aut(C,+,×, 0, 1), such that α is not
z 7→ z̄ .

Proof.
Let R ≺ R∗ be a proper elementary extension and let C∗ be the
algebraic closure of R∗. C∗ = {a + bi : a, b ∈ R∗}. Let β be the
conjugation in C∗. We can assume that |R| = |R∗|; hence C∗ ∼= C.
Let F : C ∼= C∗ be an isomorphism. Let α = F−1 ◦ β ◦ F .

fix(α) ∼= R∗ 6∼= R.

�
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An application: minimality of (ω,<)

Theorem
If X ⊆ ω is definable in (ω,<), then X is either finite or cofinite.

Proof.
Suppose X = {n : (ω,<) |= ϕ(n)} and X is neither finite nor
cofinite:

(ω,<) |= ∀x∃y∃z [x , y > z ∧ ϕ(y) ∧ ¬ϕ(z)]

Since (ω,<) ≺ (ω + (ω ∗+ω), <), the same statement is true in
the extension. Hence there are nonstandard a, b such that
(ω + (ω ∗+ω), <) |= ϕ(a) ∧ ¬ϕ(b). There is an
α ∈ Aut(ω + (ω ∗+ω), <) such that α(a) = b. Contradiction. �

Roman Kossak Elementary Extensions



An application: minimality of (ω,<)

Theorem
If X ⊆ ω is definable in (ω,<), then X is either finite or cofinite.

Proof.
Suppose X = {n : (ω,<) |= ϕ(n)} and X is neither finite nor
cofinite:

(ω,<) |= ∀x∃y∃z [x , y > z ∧ ϕ(y) ∧ ¬ϕ(z)]

Since (ω,<) ≺ (ω + (ω ∗+ω), <), the same statement is true in
the extension. Hence there are nonstandard a, b such that
(ω + (ω ∗+ω), <) |= ϕ(a) ∧ ¬ϕ(b). There is an
α ∈ Aut(ω + (ω ∗+ω), <) such that α(a) = b. Contradiction. �

Roman Kossak Elementary Extensions



Models with automorphisms

Theorem (Ehrenfeucht, Mostowski)

Every infinite model has an elementary extension with a nontrivial
automorphism.

Theorem
If M is infinite and tpM(ā) = tpM(b̄), then there is an N such that
M ≺ N and there is an α ∈ Aut(N) such that α(ā) = α(b̄).

Theorem (Schmerl)

Let (A, <, . . . ) be a linearly ordered structure (or, equivalently, a
left-orderable group). Then, there is M = (M,+,×, 0, 1) such that
N ≺M and Aut(A, <, . . . ) ∼= Aut(M).
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