Elementary Extensions

Roman Kossak

October 2, 2012

イロン イヨン イヨン イヨン

æ

- 1. First-order structure is a set with sets of functions, relations and constants: $\mathfrak{M} = (M, \{f_i\}_{i \in I}, \{R_j\}_{i \in J}, \{c_k\}_{k \in K})$
- M is a substructure of N if the functions and relations of M are restrictions of the corresponding functions and relations on N, and M and N share the same constants.
- 3. For $\bar{a} \in M^n$, the type of \bar{a} , $tp^{\mathfrak{M}}(\bar{a})$ is $\{\varphi(\bar{x}) : \mathfrak{M} \models \varphi(\bar{a})\}$.

- 1. First-order structure is a set with sets of functions, relations and constants: $\mathfrak{M} = (M, \{f_i\}_{i \in I}, \{R_j\}_{i \in J}, \{c_k\}_{k \in K})$
- M is a substructure of N if the functions and relations of M are restrictions of the corresponding functions and relations on N, and M and N share the same constants.
- 3. For $\bar{a} \in M^n$, the type of \bar{a} , $tp^{\mathfrak{M}}(\bar{a})$ is $\{\varphi(\bar{x}) : \mathfrak{M} \models \varphi(\bar{a})\}$.

- 1. First-order structure is a set with sets of functions, relations and constants: $\mathfrak{M} = (M, \{f_i\}_{i \in I}, \{R_j\}_{i \in J}, \{c_k\}_{k \in K})$
- M is a substructure of N if the functions and relations of M are restrictions of the corresponding functions and relations on N, and M and N share the same constants.
- 3. For $\bar{a} \in M^n$, the type of \bar{a} , $tp^{\mathfrak{M}}(\bar{a})$ is $\{\varphi(\bar{x}) : \mathfrak{M} \models \varphi(\bar{a})\}$.

An extension $\mathfrak{M} \subseteq \mathfrak{N}$ is elementary if for all $\bar{a} \in \bigcup_{n \in \omega} M^n$, $tp^{\mathfrak{M}}(\bar{a}) = tp^{\mathfrak{N}}(\bar{a})$.

Example

Let $\mathfrak{M} = (\omega, <)$ and $\mathfrak{N} = (\{-1\} \cup \omega, <)$. Then the extension $\mathfrak{M} \subseteq \mathfrak{N}$ is not elementary:

 $\mathsf{tp}^{\mathfrak{M}}(0) \neq \mathsf{tp}^{\mathfrak{N}}(\overline{0}).$

In fact, for all $\bar{a} \in \bigcup_{n \in \omega} \omega^n$

 $\mathsf{tp}^{\mathfrak{M}}(ar{a})
eq \mathsf{tp}^{\mathfrak{N}}(ar{a}).$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

An extension $\mathfrak{M} \subseteq \mathfrak{N}$ is elementary if for all $\bar{a} \in \bigcup_{n \in \omega} M^n$, $tp^{\mathfrak{M}}(\bar{a}) = tp^{\mathfrak{N}}(\bar{a})$.

Example

Let $\mathfrak{M} = (\omega, <)$ and $\mathfrak{N} = (\{-1\} \cup \omega, <)$. Then the extension $\mathfrak{M} \subseteq \mathfrak{N}$ is not elementary:

$$\mathsf{tp}^{\mathfrak{M}}(0)
eq \mathsf{tp}^{\mathfrak{N}}(ar{0}).$$

In fact, for all $\bar{a} \in \bigcup_{n \in \omega} \omega^n$

$$\mathsf{tp}^{\mathfrak{M}}(\bar{a}) \neq \mathsf{tp}^{\mathfrak{N}}(\bar{a}).$$

Theorem Every infinite model has a proper elementary extension.

Proof.

Let \mathfrak{M} be infinite, and let $T = \text{Th}(\mathfrak{M}, a)_{a \in M}$. Let c be a new constant, and let $T' = T \cup \{c \neq a : a \in M\}$. By the compactness theorem T' has a model \mathfrak{N} . Since $\mathfrak{N} \models T$, \mathfrak{N} is an elementary extension of \mathfrak{M} .

Corollary

Every infinite model \mathfrak{M} has elementary extensions of arbitrary large cardinalities > |M|.

Theorem

Every infinite model has a proper elementary extension.

Proof.

Let \mathfrak{M} be infinite, and let $T = \mathsf{Th}(\mathfrak{M}, a)_{a \in M}$. Let c be a new constant, and let $T' = T \cup \{c \neq a : a \in M\}$. By the compactness theorem T' has a model \mathfrak{N} . Since $\mathfrak{N} \models T$, \mathfrak{N} is an elementary extension of \mathfrak{M} .

Corollary

Every infinite model \mathfrak{M} has elementary extensions of arbitrary large cardinalities > |M|.

Theorem

Every infinite model has a proper elementary extension.

Proof.

Let \mathfrak{M} be infinite, and let $T = \mathsf{Th}(\mathfrak{M}, a)_{a \in M}$. Let c be a new constant, and let $T' = T \cup \{c \neq a : a \in M\}$. By the compactness theorem T' has a model \mathfrak{N} . Since $\mathfrak{N} \models T$, \mathfrak{N} is an elementary extension of \mathfrak{M} .

Corollary

Every infinite model \mathfrak{M} has elementary extensions of arbitrary large cardinalities > |M|.

Theorem (Löwenheim, Skolem)

Let \mathfrak{N} be a model with at most countably many functions and constants. Then \mathfrak{N} has an elementary countable submodel.

Example

 $(\mathbb{R},+, imes,0,1)$ has 2^{leph_0} countable real closed subfields.

通 とう ほうとう ほうど

Theorem (Löwenheim, Skolem)

Let \mathfrak{N} be a model with at most countably many functions and constants. Then \mathfrak{N} has an elementary countable submodel.

Example

 $(\mathbb{R}, +, \times, 0, 1)$ has 2^{\aleph_0} countable real closed subfields.

$$egin{aligned} &(\mathbb{N},+, imes,0,1)\subseteq (\mathbb{Z},+, imes,0,1)\subseteq (\mathbb{Q},+, imes,0,1)\subseteq \ &\subseteq (\mathbb{R},+, imes,0,1)\subseteq (\mathbb{C},+, imes,0,1). \end{aligned}$$

Theorem

 \mathbb{N} , \mathbb{Z} , and \mathbb{Q} have 2^{\aleph_0} countable elementary extensions.

Theorem If $\mathfrak R$ and $\mathfrak R'$ are real closed fields and $\mathfrak R\subseteq \mathfrak R'$, then $\mathfrak R\prec \mathfrak R'$

Theorem If \mathfrak{F} and \mathfrak{F}' are algebraically closed fields and $\mathfrak{F} \subseteq \mathfrak{F}'$, then $\mathfrak{F} \prec \mathfrak{F}'$.

同 ト イヨ ト イヨ ト

$$(\mathbb{N},+, imes,0,1)\subseteq (\mathbb{Z},+, imes,0,1)\subseteq (\mathbb{Q},+, imes,0,1)\subseteq \subseteq (\mathbb{R},+, imes,0,1)\subseteq (\mathbb{C},+, imes,0,1).$$

Theorem $\mathbb{N}, \mathbb{Z}, \text{ and } \mathbb{Q} \text{ have } 2^{\aleph_0} \text{ countable elementary extensions.}$

Theorem If $\mathfrak R$ and $\mathfrak R'$ are real closed fields and $\mathfrak R\subseteq \mathfrak R'$, then $\mathfrak R\prec \mathfrak R'$

Theorem If \mathfrak{F} and \mathfrak{F}' are algebraically closed fields and $\mathfrak{F} \subseteq \mathfrak{F}'$, then $\mathfrak{F} \prec \mathfrak{F}$

$$egin{aligned} &(\mathbb{N},+, imes,0,1)\subseteq (\mathbb{Z},+, imes,0,1)\subseteq (\mathbb{Q},+, imes,0,1)\subseteq \ &\subseteq (\mathbb{R},+, imes,0,1)\subseteq (\mathbb{C},+, imes,0,1). \end{aligned}$$

Theorem

 $\mathbb{N},\,\mathbb{Z},$ and \mathbb{Q} have 2^{\aleph_0} countable elementary extensions.

Theorem If \mathfrak{R} and \mathfrak{R}' are real closed fields and $\mathfrak{R}\subseteq\mathfrak{R}'$, then $\mathfrak{R}\prec\mathfrak{R}'$

Theorem

If \mathfrak{F} and \mathfrak{F}' are algebraically closed fields and $\mathfrak{F} \subseteq \mathfrak{F}'$, then $\mathfrak{F} \prec \mathfrak{F}'$.

$$egin{aligned} &(\mathbb{N},+, imes,0,1)\subseteq (\mathbb{Z},+, imes,0,1)\subseteq (\mathbb{Q},+, imes,0,1)\subseteq \ &\subseteq (\mathbb{R},+, imes,0,1)\subseteq (\mathbb{C},+, imes,0,1). \end{aligned}$$

Theorem

 $\mathbb{N},\,\mathbb{Z},$ and \mathbb{Q} have 2^{\aleph_0} countable elementary extensions.

Theorem

If $\mathfrak R$ and $\mathfrak R'$ are real closed fields and $\mathfrak R\subseteq \mathfrak R'$, then $\mathfrak R\prec \mathfrak R'$

Theorem

If \mathfrak{F} and \mathfrak{F}' are algebraically closed fields and $\mathfrak{F} \subseteq \mathfrak{F}'$, then $\mathfrak{F} \prec \mathfrak{F}'$.

Proposition

There is a nontrivial $\alpha \in Aut(\mathbb{C}, +, \times, 0, 1)$, such that α is not $z \mapsto \overline{z}$.

Proof.

Let $\mathbb{R} \prec \mathbb{R}^*$ be a proper elementary extension and let \mathbb{C}^* be the algebraic closure of \mathbb{R}^* . $\mathbb{C}^* = \{a + bi : a, b \in \mathbb{R}^*\}$. Let β be the conjugation in \mathbb{C}^* . We can assume that $|\mathbb{R}| = |\mathbb{R}^*|$; hence $\mathbb{C}^* \cong \mathbb{C}$. Let $F : \mathbb{C} \cong \mathbb{C}^*$ be an isomorphism. Let $\alpha = F^{-1} \circ \beta \circ F$.

fix
$$(\alpha) \cong \mathbb{R}^* \ncong \mathbb{R}$$
.

Proposition

There is a nontrivial $\alpha \in Aut(\mathbb{C}, +, \times, 0, 1)$, such that α is not $z \mapsto \overline{z}$.

Proof.

Let $\mathbb{R} \prec \mathbb{R}^*$ be a proper elementary extension and let \mathbb{C}^* be the algebraic closure of \mathbb{R}^* . $\mathbb{C}^* = \{a + bi : a, b \in \mathbb{R}^*\}$. Let β be the conjugation in \mathbb{C}^* . We can assume that $|\mathbb{R}| = |\mathbb{R}^*|$; hence $\mathbb{C}^* \cong \mathbb{C}$. Let $F : \mathbb{C} \cong \mathbb{C}^*$ be an isomorphism. Let $\alpha = F^{-1} \circ \beta \circ F$.

$$\mathsf{fix}(\alpha) \cong \mathbb{R}^* \not\cong \mathbb{R}.$$

Theorem

If $X \subseteq \omega$ is definable in $(\omega, <)$, then X is either finite or cofinite.

Proof.

Suppose $X = \{n : (\omega, <) \models \varphi(n)\}$ and X is neither finite nor cofinite:

$$(\omega, <) \models \forall x \exists y \exists z \ [x, y > z \land \varphi(y) \land \neg \varphi(z)]$$

Since $(\omega, <) \prec (\omega + (\omega * + \omega), <)$, the same statement is true in the extension. Hence there are nonstandard *a*, *b* such that $(\omega + (\omega * + \omega), <) \models \varphi(a) \land \neg \varphi(b)$. There is an $\alpha \in \operatorname{Aut}(\omega + (\omega * + \omega), <)$ such that $\alpha(a) = b$. Contradiction.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

If $X \subseteq \omega$ is definable in $(\omega, <)$, then X is either finite or cofinite.

Proof.

Suppose $X = \{n : (\omega, <) \models \varphi(n)\}$ and X is neither finite nor cofinite:

$$(\omega, <) \models \forall x \exists y \exists z \; [x, y > z \land \varphi(y) \land \neg \varphi(z)]$$

Since $(\omega, <) \prec (\omega + (\omega * + \omega), <)$, the same statement is true in the extension. Hence there are nonstandard *a*, *b* such that $(\omega + (\omega * + \omega), <) \models \varphi(a) \land \neg \varphi(b)$. There is an $\alpha \in \operatorname{Aut}(\omega + (\omega * + \omega), <)$ such that $\alpha(a) = b$. Contradiction.

向下 イヨト イヨト

Every infinite model has an elementary extension with a nontrivial automorphism.

Theorem

If \mathfrak{M} is infinite and $\operatorname{tp}^{\mathfrak{M}}(\overline{a}) = \operatorname{tp}^{\mathfrak{M}}(\overline{b})$, then there is an \mathfrak{N} such that $\mathfrak{M} \prec \mathfrak{N}$ and there is an $\alpha \in \operatorname{Aut}(\mathfrak{N})$ such that $\alpha(\overline{a}) = \alpha(\overline{b})$.

Theorem (Schmerl)

Let $(\mathfrak{A}, <, ...)$ be a linearly ordered structure (or, equivalently, a left-orderable group). Then, there is $\mathfrak{M} = (M, +, \times, 0, 1)$ such that $\mathbb{N} \prec \mathfrak{M}$ and $\operatorname{Aut}(\mathfrak{A}, <, ...) \cong \operatorname{Aut}(\mathfrak{M})$.

Every infinite model has an elementary extension with a nontrivial automorphism.

Theorem

If \mathfrak{M} is infinite and $tp^{\mathfrak{M}}(\bar{a}) = tp^{\mathfrak{M}}(\bar{b})$, then there is an \mathfrak{N} such that $\mathfrak{M} \prec \mathfrak{N}$ and there is an $\alpha \in Aut(\mathfrak{N})$ such that $\alpha(\bar{a}) = \alpha(\bar{b})$.

Theorem (Schmerl)

Let $(\mathfrak{A}, <, ...)$ be a linearly ordered structure (or, equivalently, a left-orderable group). Then, there is $\mathfrak{M} = (M, +, \times, 0, 1)$ such that $\mathbb{N} \prec \mathfrak{M}$ and $\operatorname{Aut}(\mathfrak{A}, <, ...) \cong \operatorname{Aut}(\mathfrak{M})$.

向下 イヨト イヨト

Every infinite model has an elementary extension with a nontrivial automorphism.

Theorem

If \mathfrak{M} is infinite and $tp^{\mathfrak{M}}(\bar{a}) = tp^{\mathfrak{M}}(\bar{b})$, then there is an \mathfrak{N} such that $\mathfrak{M} \prec \mathfrak{N}$ and there is an $\alpha \in Aut(\mathfrak{N})$ such that $\alpha(\bar{a}) = \alpha(\bar{b})$.

Theorem (Schmerl)

Let $(\mathfrak{A}, <, ...)$ be a linearly ordered structure (or, equivalently, a left-orderable group). Then, there is $\mathfrak{M} = (M, +, \times, 0, 1)$ such that $\mathbb{N} \prec \mathfrak{M}$ and $\operatorname{Aut}(\mathfrak{A}, <, ...) \cong \operatorname{Aut}(\mathfrak{M})$.

伺 とう ヨン うちょう

Every infinite model has an elementary extension with a nontrivial automorphism.

Theorem

If \mathfrak{M} is infinite and $tp^{\mathfrak{M}}(\bar{a}) = tp^{\mathfrak{M}}(\bar{b})$, then there is an \mathfrak{N} such that $\mathfrak{M} \prec \mathfrak{N}$ and there is an $\alpha \in Aut(\mathfrak{N})$ such that $\alpha(\bar{a}) = \alpha(\bar{b})$.

Theorem (Schmerl)

Let $(\mathfrak{A}, <, ...)$ be a linearly ordered structure (or, equivalently, a left-orderable group). Then, there is $\mathfrak{M} = (M, +, \times, 0, 1)$ such that $\mathbb{N} \prec \mathfrak{M}$ and $\operatorname{Aut}(\mathfrak{A}, <, ...) \cong \operatorname{Aut}(\mathfrak{M})$.

伺 とう ヨン うちょう