Various interpretations of the root system(s) of a spherical variety BART VAN STEIRTEGHEM

The little Weyl group and the spherical roots. Let G be a complex connected reductive group and let B be a Borel subgroup of G. Recall that a normal irreducible complex algebraic variety X equipped with an action of G is called **spherical** if B has a dense orbit on it. We refer the reader to [13] or [14] for an introduction to spherical varieties. Throughout this paper, X will be a spherical G-variety and G/H will be its unique open G-orbit.

Two basic invariants of X are, using the notations of [14]:

- the subgroup $\Lambda(X)$ of the character group X(B) of B consisting of the B-weights in the field $\mathbb{C}(X)$ of rational functions on X; and
- the so-called valuation cone V(X), which is a convex polyhedral cone in $\Lambda^*_{\mathbb{Q}}(X) := \operatorname{Hom}_{\mathbb{Z}}(\Lambda(X), \mathbb{Q})$ ([12, Proposition 2.1] and [3, Corollaire 3.2]).

Note that these invariants only depend on the open G-orbit of X, that is, $\Lambda(X) = \Lambda(G/H)$ and V(X) = V(G/H).

Another important birational invariant of X is its so-called little Weyl group W_X . It is defined by the following theorem, due to Brion [2, Theorem 3.5]. A completely different proof of (a generalization of) the theorem was given by Knop in [6, Theorem 7.4]. We combine the formulations of [5, Theorem 5.4] and [10, Theorem 1.1.4]. Let $T \subset B$ be a maximal torus, $W = N_G(T)/T$ the associated Weyl group and $N(\Lambda(X))$ the stabilizer in W of $\Lambda(X) \subset X(B) = X(T)$. We equip $\Lambda(X) \otimes \mathbb{Q}$ (and therefore its dual $\Lambda^*_{\mathbb{Q}}(X)$) with an inner product by restricting a W-invariant inner product on $X(T) \otimes \mathbb{Q}$ to $\Lambda(X) \otimes \mathbb{Q}$. As observed in [10], W_X does not depend on the choice of the W-invariant inner product on $X(T) \otimes \mathbb{Q}$.

- **Theorem 1.** (a) The valuation cone V(X) is a simplicial cone: there exist linearly independent $\sigma_1, \sigma_2, \ldots, \sigma_s \in \Lambda(X)$ such that $V(X) = \{v \in \Lambda^*_{\mathbb{Q}}(X) : \langle v, \sigma_i \rangle \leq 0 \text{ for all } i \in \{1, 2, \ldots, s\}\}.$
- (b) The reflections over the codimension-one faces of V(X) generate a finite subgroup W_X of $GL(\Lambda^*_{\mathbb{Q}}(X))$. We call W_X the **little Weyl group** of X. In particular, V(X) is a fundamental domain for the action of W_X on $\Lambda^*_{\mathbb{Q}}(X)$.
- (c) The lattice $\Lambda(X) \subset \Lambda(X) \otimes \mathbb{Q}$ is stable under the action of W_X on $\Lambda(X) \otimes \mathbb{Q}$. \mathbb{Q} . More precisely, W_X is a subgroup of the image of the map $N(\Lambda(X)) \to \operatorname{GL}(\Lambda^*_{\mathbb{Q}}(X))$ induced by the action of $N(\Lambda(X))$ on $\Lambda^*_{\mathbb{Q}}(X)$.

The theorem says that W_X is a crystallographic reflection group. Let $\Sigma(X)$ be the set of primitive elements $\sigma \in \Lambda(X)$ such that $\ker(\sigma) \subset \Lambda^*_{\mathbb{Q}}(X)$ is a wall of V(X) and $\langle \sigma, V(X) \rangle \leq 0$. The elements of $\Sigma(X)$ are called the **spherical roots** of X. By construction, they are the simple roots of a root system in $\Lambda \otimes \mathbb{Q}$ with Weyl group W_X for which $V(X) \subset \Lambda^*_{\mathbb{Q}}(X)$ is the negative Weyl chamber. This definition is due to Luna [11, §1.2]. The set $\Sigma(X)$ of spherical roots of X is one of the three components of the 'spherical system' of X, a fundamental combinatorial invariant of X [11, §1.2 and §7.2]. For a given group G, the set $\{\sigma \in X(B): \sigma$ is a spherical root of some spherical G-variety} is finite. If X is

wonderful, then the set $\Sigma(X)$ has an elementary geometric description; see, e.g., [13, Definition 3.4.1].

Four other sets of simple roots for W_X . Other choices have been made with regards to the lengths of the simple roots associated to X. Let \mathcal{L} be any \mathbb{Z} -submodule of $\Lambda(X) \otimes \mathbb{Q}$ generated by linearly independent vectors which satisfies the following two properties

- (L1) \mathcal{L} is W_X -stable; and
- (L2) $\mathcal{L}^{\perp} := \{ v \in \Lambda^*_{\mathbb{Q}}(X) \colon \langle v, \mathcal{L} \rangle = 0 \}$ is contained in the linear part of V(X).

Then the set $\Sigma(\mathcal{L})$ of primitive elements of \mathcal{L} such that $\ker(\sigma) \subset \Lambda^*_{\mathbb{Q}}(X)$ is a wall of V(X) and $\langle \sigma, V(X) \rangle \leq 0$ is also set of simple roots of a root system with Weyl group W_X .

Besides the standard choice $\mathcal{L} = \Lambda(X)$ mentioned above, four other natural choices are given below. We indicate afterwards why each \mathcal{L} satisfies (L1) and (L2) and briefly discuss the role of each $\Sigma(\mathcal{L})$.

- 1. $\mathcal{L} = \Lambda(G/N_G(H))$; then $\Sigma(\mathcal{L})$ is denoted $\Sigma^N(X)$;
- 2. $\mathcal{L} = \Lambda(G/\overline{H})$, where \overline{H} is the spherical closure (see below) of H; then $\Sigma(\mathcal{L})$ is denoted $\Sigma^{sc}(X)$;
- 3. $\mathcal{L} = \Lambda(X) \cap \Lambda_R = \Lambda(G/(ZH))$, where Λ_R is the root lattice of (G, T) and Z is the center of G; then $\Sigma(\mathcal{L})$ is denoted $\Sigma^K(X)$;
- 4. $\mathcal{L} = (\Lambda(X) \otimes \mathbb{Q}) \cap \Lambda_R$; then $\Sigma(\mathcal{L})$ is denoted $\Sigma^{SV}(X)$.

Recall that $N_G(H)$ acts on G/H by $n \cdot (gH) = gHn^{-1} = gn^{-1}H$. In fact, the induced map from $N_G(H)$ to the group of *G*-equivariant automorphisms of G/H is surjective and has kernel *H*, whence $\operatorname{Aut}^G(G/H) \cong N_G(H)/H$. It follows that $N_G(H)$ acts on the set $\mathcal{D}(G/H)$ of *B*-stable prime divisors (or colors, see [14]) of G/H. The kernel of this action, which contains *H* and *Z*, is called the **spherical closure** \overline{H} of *H*. Luna introduced this notion and used it to reduce the classification of spherical varieties to that of wonderful varieties [11]. Knop proved that G/\overline{H} has a wonderful compactification in [7, Corollary 7.6].

We now indicate why the four choices for \mathcal{L} above satisfy (L1) and (L2). If Kis a subgroup of G containing H then the surjection $G/H \to G/K$ implies that we have an inclusion $\Lambda(G/K) \subset \Lambda(G/H)$ and a surjective linear map $\pi \colon \Lambda^*_{\mathbb{Q}}(G/H) \to \Lambda^*_{\mathbb{Q}}(G/K)$. Moreover $\pi(V(G/H)) = V(G/K)$, see [5, §4]. One can show (using [5, Theorem 4.4] for example) that $\Lambda(G/N_G(H))^{\perp} \subset \Lambda^*_{\mathbb{Q}}(X)$ is the linear part of V(X), which is also the invariant subspace of $\Lambda^*_{\mathbb{Q}}(X)$ for the action of W_X . It is now straightforward to show that if K is a subgroup of $N_G(H)$ containing H, then $\Lambda(G/K)$ satisifes (L1) and (L2). This takes care of the first three choices for \mathcal{L} . For the fourth choice, $\mathcal{L} = (\Lambda(X) \otimes \mathbb{Q}) \cap \Lambda_R$, condition (L1) follows from the second assertion in part (c) of Theorem 1. Condition (L2) follows from the fact that $\Lambda(X) \cap \Lambda_R$ satisfies it.

We briefly discuss the role of the four alternative sets of simple roots, in the same order as above.

- 1. $\Sigma^{N}(X)$: The subgroup $\Lambda(G/N_{G}(H)) \subset \Lambda(X)$ is the 'root lattice' of X, defined in [7, §6], and $\Sigma^{N}(X)$ is a basis of $\Lambda(G/N_{G}(H))$ and of the root system Δ_{X} Knop associates to X. If X is homogeneous or quasi-affine (see [7, Remark 6.6]), then the natural map $\operatorname{Aut}^{G}(X) \to \operatorname{Hom}(\Lambda(X), \mathbb{C}^{\times})$ of [7, Theorem 5.4] induces an isomorphism $\operatorname{Aut}^{G}(X) \to \operatorname{Hom}(\Lambda(X)/\Lambda(G/N_{G}(H)), \mathbb{C}^{\times})$. If X is quasiaffine, then there is a very simple construction of $\Sigma^{N}(X)$, see [7, Theorem 1.3]. This set also plays an important role in the geometry of Alexeev and Brion's moduli scheme of affine spherical varieties with a given weight monoid, see [1, Prop 2.13 and Cor 2.14].
- 2. $\Sigma^{sc}(X)$: We already mentioned the importance of the notion of spherical closure in Luna's classification program of spherical varieties. To be a bit more specific, his theory of augmentations allows one to combinatorially classify all spherical subgroups H of G with a given spherical closure [11, §6.4].
- 3. $\Sigma^{K}(X)$: This choice of normalization of the simple roots of W_X is the one in [8, §1]. In this paper, Knop defines the set of spherical roots of a spherical variety over a field of arbitrary characteristic and $\Sigma^{K}(X)$ is that set when the characteristic is zero.
- 4. $\Sigma^{SV}(X)$: This is the set of 'normalized simple spherical roots' of [15, §3.1], where the authors also conjecture that it is the set of simple roots of the 'dual group' of X defined by Gaitsgory and Nadler in [4].

From $\Sigma(\mathbf{X})$ to $\Sigma^{\mathbf{N}}(\mathbf{X})$, $\Sigma^{\mathbf{sc}}(\mathbf{X})$ and $\Sigma^{\mathbf{K}}(\mathbf{X})$. The precise relationship between $\Sigma(X)$ and $\Sigma^{N}(X)$ was described by Losev in [9, Theorem 2]. Given $\sigma \in \Sigma(X)$, either $\sigma \in \Sigma^{N}(X)$ or $2\sigma \in \Sigma^{N}(X)$, and Losev's theorem says that $\sigma \in \Sigma(X)$ is doubled in $\Sigma^{N}(X)$ if and only if $\sigma \notin \Lambda_{R}$ or σ satisfies one of the conditions (1), (2) or (3) of [9, Definition 4.1.1]. The sets $\Sigma^{sc}(X)$ and $\Sigma^{K}(X)$ are obtained in a similar fashion from $\Sigma(X)$: for the latter one only doubles those $\sigma \in \Sigma(X)$ that do not belong to the root latter Λ_{R} ; for $\Sigma^{sc}(X)$ one doubles those $\sigma \in \Sigma(X)$ that do not belong to Λ_{R} or that satify condition (2) or (3) of [9, Definition 4.1.1].

Examples. The following examples were taken from [16]. For $X = \operatorname{SL}(2)/T$ one has $\Sigma(X) = \Sigma^{sc}(X) = \Sigma^{K}(X) = \Sigma^{SV}(X) = \{\alpha\}$ and $\Sigma^{N}(X) = \{2\alpha\}$, where α is the simple root of SL(2). For $X = (\operatorname{SL}(2) \times \operatorname{SL}(2))/\operatorname{SL}(2)$, we have $\Sigma(X) = \{\frac{\alpha + \alpha'}{2}\}$, whereas $\Sigma^{N}(X) = \Sigma^{sc}(X) = \Sigma^{K}(X) = \Sigma^{SV}(X) = \{\alpha + \alpha'\}$. When $X = \operatorname{SL}(3)/\operatorname{SO}(3)$ we have that $\Sigma^{SV}(X)$ is the set of simple roots of SL(3), whereas $\Sigma(X) = \Sigma^{N}(X) = \Sigma^{sc}(X) = \Sigma^{K}(X)$ consists of the doubles of the simple roots. Finally, when $X = \operatorname{G}_2/\operatorname{SL}(3)$, then $\Sigma(X) = \Sigma^{K}(X) = \Sigma^{SV}(X) = \{\alpha_1 + 2\alpha_2\}$, while $\Sigma^{sc}(X) = \Sigma^{N}(X) = \{2\alpha_1 + 4\alpha_2\}$, where α_1 and α_2 are the simple roots of G_2 .

Acknowledgment. I thank G. Pezzini for his invaluable help in preparing this talk and report.

References

 V. Alexeev and M. Brion, Moduli of affine schemes with reductive group action, J. Algebraic Geom. 14 (2005), 83–117.

- [2] M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), 115–143.
- [3] M. Brion and F. Pauer, Valuations des espaces homogènes sphériques., Comment. Math. Helv. 62 (1987), 265–285.
- [4] D. Gaitsgory and D. Nadler, Spherical varieties and Langlands duality, Mosc. Math. J. 10:1 (2010), 65–137.
- [5] F. Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), 225–249, Manoj Prakashan, Madras, 1991.
- [6] F. Knop, The asymptotic behavior of invariant collective motion, Invent. Math. 116 (1994), 309–328.
- [7] F. Knop, Automorphisms, Root Systems, and Compactifications of Homogeneous Varieties, JAMS 9 (1996), 153–174.
- [8] F. Knop, Spherical roots of spherical varieties, arXiv:1303.2466v2 (2013).
- [9] I. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), 315–343.
- [10] I. Losev, Computation of Weyl groups of G-varieties, Represent. Theory 14 (2010), 9–69.
- [11] D. Luna, Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. 94 (2001) 161-226.
- F. Pauer, "Caractérisation valuative" d'une classe de sous-groupes d'un groupe algébrique, C.R. du 109^e Congrs Nat. Soc. Sav. 3 (1984), 159–166.
- [13] G. Pezzini, Lectures on spherical and wonderful varieties Les cours du CIRM 1 no. 1 (2010), 33-53.
- [14] G. Pezzini, Basics of the structure of spherical varieties, this report.
- [15] Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties, arXiv:1203.0039v1 (2012).
- [16] B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), 375–403.