
Various interpretations of the root system(s) of a spherical variety

Bart Van Steirteghem

The little Weyl group and the spherical roots. Let G be a complex con-
nected reductive group and let B be a Borel subgroup of G. Recall that a normal
irreducible complex algebraic variety X equipped with an action of G is called
spherical if B has a dense orbit on it. We refer the reader to [13] or [14] for an
introduction to spherical varieties. Throughout this paper, X will be a spherical
G-variety and G/H will be its unique open G-orbit.

Two basic invariants of X are, using the notations of [14]:

• the subgroup Λ(X) of the character group X(B) of B consisting of the
B-weights in the field C(X) of rational functions on X; and
• the so-called valuation cone V (X), which is a convex polyhedral cone in

Λ∗Q(X) := HomZ(Λ(X),Q) ([12, Proposition 2.1] and [3, Corollaire 3.2]).

Note that these invariants only depend on the open G-orbit of X, that is, Λ(X) =
Λ(G/H) and V (X) = V (G/H).

Another important birational invariant of X is its so-called little Weyl group
WX . It is defined by the following theorem, due to Brion [2, Theorem 3.5]. A
completely different proof of (a generalization of) the theorem was given by Knop
in [6, Theorem 7.4]. We combine the formulations of [5, Theorem 5.4] and [10,
Theorem 1.1.4]. Let T ⊂ B be a maximal torus, W = NG(T )/T the associated
Weyl group and N(Λ(X)) the stabilizer in W of Λ(X) ⊂ X(B) = X(T ). We equip
Λ(X) ⊗ Q (and therefore its dual Λ∗Q(X)) with an inner product by restricting a
W -invariant inner product on X(T ) ⊗ Q to Λ(X) ⊗ Q. As observed in [10], WX

does not depend on the choice of the W -invariant inner product on X(T )⊗Q.

Theorem 1. (a) The valuation cone V (X) is a simplicial cone: there exist lin-
early independent σ1, σ2, . . . , σs ∈ Λ(X) such that V (X) = {v ∈ Λ∗Q(X) : 〈v, σi〉 ≤
0 for all i ∈ {1, 2, . . . , s}}.

(b) The reflections over the codimension-one faces of V (X) generate a finite sub-
group WX of GL(Λ∗Q(X)). We call WX the little Weyl group of X. In
particular, V (X) is a fundamental domain for the action of WX on Λ∗Q(X).

(c) The lattice Λ(X) ⊂ Λ(X) ⊗ Q is stable under the action of WX on Λ(X) ⊗
Q. More precisely, WX is a subgroup of the image of the map N(Λ(X)) →
GL(Λ∗Q(X)) induced by the action of N(Λ(X)) on Λ∗Q(X).

The theorem says that WX is a crystallographic reflection group. Let Σ(X)
be the set of primitive elements σ ∈ Λ(X) such that ker(σ) ⊂ Λ∗Q(X) is a wall
of V (X) and 〈σ, V (X)〉 ≤ 0. The elements of Σ(X) are called the spherical
roots of X. By construction, they are the simple roots of a root system in Λ⊗Q
with Weyl group WX for which V (X) ⊂ Λ∗Q(X) is the negative Weyl chamber.
This definition is due to Luna [11, §1.2]. The set Σ(X) of spherical roots of X
is one of the three components of the ‘spherical system’ of X, a fundamental
combinatorial invariant of X [11, §1.2 and §7.2]. For a given group G, the set
{σ ∈ X(B) : σ is a spherical root of some spherical G-variety} is finite. If X is
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wonderful, then the set Σ(X) has an elementary geometric description; see, e.g.,
[13, Definition 3.4.1].

Four other sets of simple roots for WX . Other choices have been made with
regards to the lengths of the simple roots associated to X. Let L be any Z-
submodule of Λ(X)⊗Q generated by linearly independent vectors which satisfies
the following two properties

(L1) L is WX -stable; and
(L2) L⊥ := {v ∈ Λ∗Q(X) : 〈v,L〉 = 0} is contained in the linear part of V (X).

Then the set Σ(L) of primitive elements of L such that ker(σ) ⊂ Λ∗Q(X) is a wall
of V (X) and 〈σ, V (X)〉 ≤ 0 is also set of simple roots of a root system with Weyl
group WX .

Besides the standard choice L = Λ(X) mentioned above, four other natural
choices are given below. We indicate afterwards why each L satisfies (L1) and
(L2) and briefly discuss the role of each Σ(L).

1. L = Λ(G/NG(H)); then Σ(L) is denoted ΣN (X);
2. L = Λ(G/H), where H is the spherical closure (see below) of H; then Σ(L) is

denoted Σsc(X);
3. L = Λ(X) ∩ΛR = Λ(G/(ZH)), where ΛR is the root lattice of (G,T ) and Z is

the center of G; then Σ(L) is denoted ΣK(X);
4. L = (Λ(X)⊗Q) ∩ ΛR; then Σ(L) is denoted ΣSV (X).

Recall that NG(H) acts on G/H by n · (gH) = gHn−1 = gn−1H. In fact,
the induced map from NG(H) to the group of G-equivariant automorphisms of

G/H is surjective and has kernel H, whence AutG(G/H) ∼= NG(H)/H. It follows
that NG(H) acts on the set D(G/H) of B-stable prime divisors (or colors, see
[14]) of G/H. The kernel of this action, which contains H and Z, is called the
spherical closure H of H. Luna introduced this notion and used it to reduce
the classification of spherical varieties to that of wonderful varieties [11]. Knop
proved that G/H has a wonderful compactification in [7, Corollary 7.6].

We now indicate why the four choices for L above satisfy (L1) and (L2). If K
is a subgroup of G containing H then the surjection G/H → G/K implies that we
have an inclusion Λ(G/K) ⊂ Λ(G/H) and a surjective linear map π : Λ∗Q(G/H)→
Λ∗Q(G/K). Moreover π(V (G/H)) = V (G/K), see [5, §4]. One can show (using

[5, Theorem 4.4] for example) that Λ(G/NG(H))⊥ ⊂ Λ∗Q(X) is the linear part of
V (X), which is also the invariant subspace of Λ∗Q(X) for the action of WX . It
is now straightforward to show that if K is a subgroup of NG(H) containing H,
then Λ(G/K) satisifes (L1) and (L2). This takes care of the first three choices for
L. For the fourth choice, L = (Λ(X) ⊗ Q) ∩ ΛR, condition (L1) follows from the
second assertion in part (c) of Theorem 1. Condition (L2) follows from the fact
that Λ(X) ∩ ΛR satisfies it.

We briefly discuss the role of the four alternative sets of simple roots, in the
same order as above.
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1. ΣN (X): The subgroup Λ(G/NG(H)) ⊂ Λ(X) is the ‘root lattice’ of X, defined
in [7, §6], and ΣN (X) is a basis of Λ(G/NG(H)) and of the root system ∆X

Knop associates to X. If X is homogeneous or quasi-affine (see [7, Remark 6.6]),

then the natural map AutG(X)→ Hom(Λ(X),C×) of [7, Theorem 5.4] induces

an isomorphism AutG(X) → Hom(Λ(X)/Λ(G/NG(H)),C×). If X is quasi-
affine, then there is a very simple construction of ΣN (X), see [7, Theorem 1.3].
This set also plays an important role in the geometry of Alexeev and Brion’s
moduli scheme of affine spherical varieties with a given weight monoid, see [1,
Prop 2.13 and Cor 2.14].

2. Σsc(X): We already mentioned the importance of the notion of spherical closure
in Luna’s classification program of spherical varieties. To be a bit more specific,
his theory of augmentations allows one to combinatorially classify all spherical
subgroups H of G with a given spherical closure [11, §6.4].

3. ΣK(X): This choice of normalization of the simple roots of WX is the one
in [8, §1]. In this paper, Knop defines the set of spherical roots of a spherical
variety over a field of arbitrary characteristic and ΣK(X) is that set when the
characteristic is zero.

4. ΣSV (X): This is the set of ‘normalized simple spherical roots’ of [15, §3.1],
where the authors also conjecture that it is the set of simple roots of the ‘dual
group’ of X defined by Gaitsgory and Nadler in [4].

From Σ(X) to ΣN(X), Σsc(X) and ΣK(X). The precise relationship between
Σ(X) and ΣN (X) was described by Losev in [9, Theorem 2]. Given σ ∈ Σ(X),
either σ ∈ ΣN (X) or 2σ ∈ ΣN (X), and Losev’s theorem says that σ ∈ Σ(X) is
doubled in ΣN (X) if and only if σ /∈ ΛR or σ satisfies one of the conditions (1),
(2) or (3) of [9, Definition 4.1.1]. The sets Σsc(X) and ΣK(X) are obtained in a
similar fashion from Σ(X): for the latter one only doubles those σ ∈ Σ(X) that
do not belong to the root lattce ΛR; for Σsc(X) one doubles those σ ∈ Σ(X) that
do not belong to ΛR or that satifsy condition (2) or (3) of [9, Definition 4.1.1].

Examples. The following examples were taken from [16]. For X = SL(2)/T one
has Σ(X) = Σsc(X) = ΣK(X) = ΣSV (X) = {α} and ΣN (X) = {2α}, where α
is the simple root of SL(2). For X = (SL(2) × SL(2))/SL(2), we have Σ(X) =

{α+α
′

2 }, whereas ΣN (X) = Σsc(X) = ΣK(X) = ΣSV (X) = {α + α′}. When

X = SL(3)/SO(3) we have that ΣSV (X) is the set of simple roots of SL(3), whereas
Σ(X) = ΣN (X) = Σsc(X) = ΣK(X) consists of the doubles of the simple roots.
Finally, when X = G2/SL(3), then Σ(X) = ΣK(X) = ΣSV (X) = {α1 + 2α2},
while Σsc(X) = ΣN (X) = {2α1 + 4α2}, where α1 and α2 are the simple roots of
G2.
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talk and report.
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