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1 Four constructions

Let V be a real vector space of dimension d, and let VZ ⊂ V be a lattice. Let a1, . . . , an ∈ V ∗Z r {0}
be a collection of nonzero linear functions on V that take integer values on VZ. Let λ1, . . . , λn ∈ Z
be any integers, and let

P := {v ∈ V | ai(v) + λi ≥ 0 for all i}.

This is called a rational polyhedron; if it is bounded, it is called a rational polytope. Since

all of our polyhedra and polytopes will be rational, we’ll drop the adjective.

For all i, let

Fi := {v ∈ P | ai(v) + λi = 0}

be the ith facet of P . A face of P is an intersection of facets. A face of dimension 1 is called an

edge, and a face of dimension 0 is called a vertex. We will always assume that P has at least one

vertex.

We intuitively expect that P has dimension d, each facet Fi has dimension d − 1, each ai is

primitive (not a multiple of another element of V ∗Z , and the set of all facets is distinct. However,

none of these statements is implied by the definitions, and we will not assume them. For example,

if a1 = −a2 and λ1 = −λ2, then P will be contained in a hyperplane and therefore have dimension

smaller than d. If a1 = a2 and λ1 = λ2, then F1 will equal F2. If a1 = a2 and λ1 = λ2 + 1, then F2

will be empty. If a3 = a1 +a2 and λ3 = λ1 +λ2, then F3 will be contained in F1∩F2, and therefore

have smaller than expected dimension.

If all of our expectations do hold, then the data of a1, . . . , an and λ1, . . . , λn are completely

determined by P . If not, then whenever we say we have a rational polyhedron, what we really

mean is that we have a collection a1, . . . , an and λ1, . . . , λn such that the associated polyhedron

P has at least one vertex. It is a fact that the varieties constructed from the four procedures

described below depend only on P and not on the additional data, and this will be obvious in the

cases of the first and fourth constructions. It is not at all obvious in the cases of the second or

third construction, and in fact the examples that we get by allowing repeated or empty facets are

very useful for illustrating what happens.

1.1 First construction

Let T := V ∗/V ∗Z . Since V ∗ ∼= Rd and V ∗Z
∼= Zd, we have T ∼= (S1)d. This isomorphism is not

canonical, however, since we have no canonical choice of basis for VZ. What is true canonically?

The Lie algebra of T (the tangent space to T at the identity) is naturally isomorphic to V ∗. We

also have natural group isomorphisms

Hom(T, S1) ∼= {f ∈ Hom(V ∗,R) | f(V ∗Z ) ⊂ Z} ∼= VZ

and

Hom(S1, T ) ∼= {f ∈ Hom(R, V ∗) | f(Z) ⊂ V ∗Z } ∼= V ∗Z .
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In particular, for each i, the element ai ∈ V ∗Z determines a 1-dimensional subtorus S1 ∼= Ti ⊂ T .

(One way to think of this subtorus is as the image of Rai ⊂ V ∗ in T = V ∗/V ∗Z . The fact that it

closes up follows from the fact that ai ∈ V ∗Z .)

For each face F ⊂ P , let

IF := {i | F ⊂ Fi}

be the biggest set of facets with intersection F , and let

TF :=
∏
i∈IF

Ti ⊂ T

be the subtorus generated by Ti for all i ∈ IF . The dimension of TF is equal to the codimension of

F in P . In particular, if F = Fi is a facet, then TF = Ti. If F is a vertex, then TF = T .

Definition 1.1. Let X1(P ) := P × T/ ∼, where

(p1, t1) ∼ (p2, t2) if p1 = p2 ∈ F and t−1
1 t2 ∈ TF for some face F ⊂ P .

More colloquially, we start with P × T , and over every point p ∈ P , we divide by the subtorus

TF ⊂ T , where F is the largest face in which p lies.

Some properties are obvious from this definition: T acts on X1(P ) with orbit space homeo-

morphic to P , X1(P ) is compact if and only if P is a polytope. If a face F of P is regarded as

a polyhedron in its own right, then we have a natural equivariant inclusion of X1(F ) into X1(P ).

Many other properties are not obvious. For example, it’s not immediately clear that X1(P ) should

have a complex algebraic structure or an action of the complexification of T . All of that will come

later, via the other constructions. We will, however, give a sufficient criterion for X1(P ) to be a

smooth manifold.

Definition 1.2. We say that P is simple if, for every vertex v ∈ P , |Iv| = d. We say that P is

Delzant if it is simple and, for every vertex v ∈ P , the set {ai | i ∈ Iv} spans not only the vector

space V ∗ (which is automatic) but also the lattice V ∗Z . Thus simplicity is a purely combinatorial

condition, but Delzantness is not.

Example 1.3. Give examples in which these conditions fail.

Theorem 1.4. If P is Delzant, then X1(P ) is a smooth manifold of dimension 2d.

Proof. A neighborhood of each vertex looks like Cd ∼= R2d. Thus one only needs to check that the

transition functions are smooth, which they are.

Remark 1.5. Though we won’t prove it now, if P is simple, then X1(P ) is an orbifold.

Example 1.6. Chopping off a corner of a Delzant polytope corresponds to taking a topological

blow-up of the toric variety.
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1.2 Second construction

Let Tn = U(1)n be the n-dimensional coordinate torus. As we remarked in Section 1.1, each ai

defines a homomorphism from U(1) to T ; taken all together, they define a homomorphism from Tn

to T . The fact that P has at least one vertex implies that this homomorphism is surjective. Let

K ⊂ Tn be the kernel, so that we have a short exact sequence of tori

1→ K → Tn → T → 1. (1)

Since K is an (n − d)-dimensional subgroup of Tn, it must be isomorphic to U(1)n−d times some

(possibly trivial) finite abelian group.

Just to start to get a feel for K, we’ll prove the following two lemmas. Let k = Lie(K) and

tn = Lie(Tn) ∼= Rn. The inclusion of K into Tn induces an inclusion of k into tn.

Lemma 1.7. An n-tuple (k1, . . . , kn) lies in k if and only if
∑
kiai = 0.

Proof. The map (k1, . . . , kn) 7→
∑
kiai is the derivative of the map from Tn to T .

Lemma 1.8. The group K is connected if and only if {a1, . . . , an} spans V ∗Z over the integers.

Proof. This is just a big diagram chase around the following commutative diagram:

0

��

0

��

0

��
0 // kZ //

��

tnZ
//

��

tZ = V ∗Z

��
0 // k //

��

tn //

��

t = V ∗ //

��

0

1 // K // Tn //

��

T //

��

1

1 1

The vertical sequence on the left is short-exact if and only if the horizontal sequence on top is

short-exact.

We now define a map

µ : Cn → k∗

as follows. Let i∗ : (tn)∗ → k∗ the projection dual to the inclusion of k into tn. Since Tn is endowed

with a set of coordinates, we may identify (tn)∗ with Rn. We then put

µ(z1, . . . , zn) := i∗
(

1

2
|z1|2 − λ1, . . . ,

1

2
|zn|2 − λn

)
. (2)
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Note that Tn acts on Cn in the obvious way, and the map µ is invariant under the action of Tn.

In particular, Tn (as well as its subtorus K) acts on each fiber of µ.

Definition 1.9. Let X2(P ) := µ−1(0)/K.

Since Tn acts on µ−1(0), T ∼= Tn/K acts on X2(P ) = µ−1(0)/K. It is easy to check that

the orbit space can be naturally identified with P , but we’ll save that for Section 2. It is not

immediately obvious when X2(P ) is smooth. Indeed, two things could go wrong: 0 ∈ k∗ could fail

to be a regular value of µ, or the action of K on µ−1(0) could fail to be free. In Section 2 we will

show that neither of these things happen when P is Delzant. In this case, we’ll show that X2(P )

is a symplectic manifold, and that the action of T on X2(P ) is the moment map.

1.3 Third construction

Let

1→ KC → TnC → TC → 1.

be the complexification of Equation (1). More precisely, let TC := V ∗C/V
∗
Z , so that TC ∼= (C×)d

(non-canonnically), and we have natural isomorphisms

Hom(TC,C×) ∼= {f ∈ Hom(V ∗C ,C) | f(V ∗Z ) ⊂ Z} ∼= VZ

and

Hom(C×, TC) ∼= {g ∈ Hom(C, V ∗C ) | g(Z) ⊂ V ∗Z } ∼= V ∗Z .

The second isomorphism tells us how to use the elements a1, . . . , an to define a surjective homo-

morphism TnC → TC, and we define KC to be the kernel. The group TnC , and therefore also the

subgroup KC, acts on Cn in the obvious way, extending the actions of Tn and K. If kC = Lie(KC),

we again have kC ⊂ tnC
∼= Cn, and Lemma 1.7 holds with k replaced by kC.

Remark 1.10. Another way to express the relationship between TC and VZ is to observe that

TC ∼= SpecC[VZ], where C[VZ] denotes the group algebra. (If you don’t know what Spec means,

then you can come back to this remark after reading Section 3.1.) Indeed, we have already seen

that every element of VZ defines a function on TC with values in C× ⊂ C, and that the sum of two

elements gives rise to the product of the two functions. By choosing an isomorphism between TC

and (C×)d, we can see that these functions form an additive basis for the ring of all functions on

TC. The somewhat confusing fact is that the surjective map from V ∗C to TC is not algebraic! After

choosing a basis to identify V ∗C with Cd, the map would have the form

(v1, . . . , vd) 7→ (e2πiv1 , . . . , e2πivd),

which is not algebraic because the exponential map is not polynomial. What this is telling us is

that, if we want to think of TC as an algebraic variety, then TC := SpecC[VZ] is the “correct”
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definition while V ∗C/VZ doesn’t really make sense. If we want to think of TC as a complex analytic

space, the two definitions are equivalent.

For any z = (z1, . . . , zn) ∈ Cn, let Fz :=
⋂
zi=0 Fi. This is a face of P . For most z, none of the

coordinates is zero, so Fz = P is the entire polyhedron. The more coordinates of z that vanish, the

smaller Fz will be. In particular, Fz is sometimes equal to the empty face. Let

Uλ := {z ∈ Cn | Fz 6= ∅}.

This is clearly a Zariski-open subset of Cn; it is the complement of some coordinate subspaces,

therefore it has an action of the torus TnC . Note that KC (like K) depends only on the parameters

a1, . . . , an, while Uλ (like µ−1(0)) depends only on the parameters λ1, . . . , λn.

Definition 1.11. Let X3(P ) := Uλ/ ∼, where

z ∼ z′ if KC · z ∩KC · z′ 6= ∅.

Example 1.12. Explain the difference between this quotient and a geometric quotient. Note that

when the action of KC is locally free (which is often the case), then it really is a geometric quotient.

It is not immediately obvious that ∼ is an equivalence relation or that X3(P ) is Hausdorff; both

of these will follow from Proposition 4.10. It is clear that the complex torus TC ∼= TnC/KC acts on

X3(P ) = Uλ/KC. The following proposition gives a beautiful characterization of the orbits of this

action. For any z ∈ Uλ, let [z] ∈ X3(P ) be the equivalence class of z.

Proposition 1.13. The assignment [z] 7→ Fz gives a bijection between TC-orbits in X3(P ) and

nonempty faces of P .

In order to prove Proposition 1.13, and again to prove Theorems 5.3 and 5.4 we will need the

following fact, whose proof eludes me at the moment.

Fact 1.14. Let G be an algebraic group acting linearly on a vector space W . Let z be an element

of W , and z′ another element of W that lies in the closure of the orbit G · z. Then there exists an

element g ∈ G and a homomorphism ρ ∈ Hom(C×, G) such that z′ = limt→∞ ρ(t)g · z.

Proof of Proposition 1.13. To see that the assignment [z] 7→ Fz is well-defined, we must show that

if z ∼ z′, then Fz = Fz′ . It is enough to prove this when z′ ∈ KC · z. Write

z = (z1, . . . , zn) and z′ = (z′1, . . . , z
′
n).

If z′ ∈ KC · z, then Fact 1.14 tells us that there exists an element k = (k1, . . . , kn) ∈ kC ⊂ tn ∼= Cn

such that

z′ = lim
t→∞

etk · z = lim
t→∞

(etk1z1, . . . , e
tknzn).

This means that, for every i, at exactly one of the following conditions must hold:
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(a) zi = z′i = 0

(b) zi = z′i 6= 0 and ki = 0

(c) zi 6= z′i = 0 and ki < 0.

Write {1, . . . , n} = AtB tC, where A is the set of all i satisfying condition (a), B is the set of all

i satisfying condition (b), and C is the set of all i satisfying condition (c). To show that Fz = Fz′ ,

we need to show that for all i ∈ C and v ∈ Fz, ai(v) + λi = 0.

Choose an arbitrary v ∈ Fz as well as an arbitrary v′ ∈ Fz′ ; the fact that such a v′ exists follows

from the fact that z′ ∈ Uλ. We have∑
i∈C

ki(ai(v) + λi) =
∑
i∈C

kiai(v) +
∑
i∈C

kiλi

= −
∑
i∈A

kiai(v) +
∑
i∈C

kiλi because
∑

kiai = 0 and ki = 0 for all i ∈ B

=
∑
i∈A

kiλi +
∑
i∈C

kiλi because v ∈ Fz and zi = 0 for all i ∈ A

=
∑
i∈A

kiai(v
′) +

∑
i∈C

kiai(v
′) because v′ ∈ Fz′ and z′i = 0 for all i ∈ A ∪ C

=

n∑
i=1

kiai(v
′) because ki = 0 for all i ∈ B

= 0 because
∑

kiai = 0.

Since we know that ai(v) + λi ≥ 0 for all i and ki < 0 for all i ∈ C, the only way this is possible is

if ai(v) + λi = 0 for all i ∈ C. Thus [z] 7→ Fz is well-defined.

Surjectivity of this assignment is obvious; we now prove injectivity. Let z be in arbitrary element

of Uλ, and let Iz := {i | zi = 0} ⊂ IFz . It follows from the definitions of Fz and IFz that the two

sets {ai | i ∈ Iz} ⊂ {ai | i ∈ IFz} have the same linear span. In particular, this means that we

can find an element k = (k1, . . . , kn) ∈ kC such that ki = −1 for all k ∈ IFz r Iz and ki = 0 for all

i /∈ IFz . Let

z′ := lim
t→∞

etk · z.

Then z′i = 0 if i ∈ IFz and z′i = zi 6= 0 otherwise. It is clear that Fz = Fz′ , hence z′ ∈ Uλ and

z ∼ z′. Now hit z′ with an element of TnC to obtain a new element z′′ ∈ Uλ such that z′′i = 0 if

i ∈ IFz and z′′i = 1 otherwise. It is clear from the definition that [z′′] lies in the same TC-orbit as

[z′] = [z], and that [z′′] is completely determined by Fz. hence the TC-orbit of [z] is completely

determined by Fz.

Remark 1.15. We can also show that the bijection of Proposition 1.13 is compatible with dimen-

sion and closure relations. That is, a TC-orbit of complex dimension r is sent to a face of real

dimension r, and one orbit lies in the closure of another if and only if its associated face lies in the
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closure of the other face. Though it is probably possible to prove these facts directly, it will follow

easily from the equivalence of the first three constructions.

1.4 Fourth construction

Let Σ := {(v, r) ∈ V × R≥0| | ai(v) + λir ≥ 0for all i}. The intersection Σ0 := Σ ∩ V × {0} is

sometimes called the cone of unbounded directions in P . The complement ΣrΣ0 is the union

of all of the rays through P ⊂ V × {1} ⊂ V × R, and Σ is the closure of this locus. Consider the

semigroup SP := Σ ∩ (VZ × N) along with its semigroup ring C[SP ], which is graded by N.

Example 1.16. A standard interval, a standard triangle, a ray, a square.

Definition 1.17. Let X4(P ) := ProjC[SP ].

Proj will be defined in Section 3, but for the time being it is not so difficult to give an idea of

what’s going on, at least in certain special (but common) cases. The simplest case is when C[SP ]

is a polynomial ring generated in degree 1; this happens when SP is equal to the standard simplex

in Rd, in which case we have d+ 1 generators. In this case

ProjC[SP ] = ProjC[x0, . . . , xn] = Pn

(for now, take this as a definition of Proj). Now suppose that C[SP ] is generated in degree 1, which

means that it is isomorphic to C[x0, . . . , xn]/IP for some homogeneous ideal IP . Then ProjC[SP ]

is the variety cut out of Pn by the polynomials in IP .

Example 1.18. The square.

Next suppose that C[SP ] is a polynomial ring generated in degrees 0 and 1, that is,

C[SP ] = C[x0, . . . , xn, y1, . . . , ym],

with deg xi = 1 and deg yi = 0. This happens, for example, in the case of the ray. Then

ProjC[SP ] = Pn × Cm;

again, this can be taken as a definition for now. More generally, if C[SP ] is a quotient of the ring

C[x0, . . . , xn, y1, . . . , ym] by an ideal IP that is homogeneous in the y variables, then ProjC[SP ] is

the subvariety cut out of Pn × Cm by this ideal.

Example 1.19. The ray. More generally, any cone.

Example 1.20. The blow-up of C2 at a point. Go back and treat this in the context of the three

other constructions, as well.

From this construction we see that X4(P ) is an algebraic variety (and that it is projective over

the affine variety X4(Σ0)). In particular, X4(P ) is compact if and only if Σ0 = {0}, which is
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equivalent to the condition that P is a polytope. Furthermore, the VZ-grading of C[SP ] induces an

action of TC on C[SP ] and therefore also on X4(P ). On the other hand, the questions of smoothness

and classification of the TC-orbits are somewhat opaque from this perspective.

2 Symplectic reduction: the first and second constructions

In this section we’ll introduce the concept of symplectic reduction, and use it to better understand

the second construction in the previous section. We’ll show that if P is Delzant, then X2(P )

is a symplectic manifold, and the action of T on X2(P ) is hamiltonian. In this case X1(P ) is

diffeomorphic to X2(P ), and this diffeomorphism identifies the projection from X1(P ) to P with

the moment map for the T -action.

2.1 The homeomorphism

The proof that X1(P ) and X2(P ) are T -equivariantly homeomorphic is quite elementary; we don’t

need to assume that P is Delzant, nor do we need to use the language of symplectic geometry, even

though a seasoned symplectic geometer will immediately spot the moment maps lurking within the

proof. Just to make the point that this is not hard, we’ll get it out of the way right away.

The projection from Tn to T induces a projection π : tn → t and an inclusion π∗ : t∗ → (tn)∗.

Recall that we have identified t∗ with V and (tn)∗ with Rn. With these identifications, we have

π∗(v) =
(
a1(v), . . . , an(v)

)
for all v ∈ V .

Consider the shifted map π∗λ : V → Rn defined by the formula

π∗λ(v) :=
(
a1(v) + λ1, . . . , an(v) + λn

)
for all v ∈ V .

It is immediate from the definition that P is the preimage of Rn≥0 along the map π∗λ. Thus we will

use π∗λ to identify P with a subset of Rn≥0. We then have

P =
{

(r1, . . . , rn) ∈ Rn≥0 | (r1, . . . , rn) ∈ imπ∗λ
}

=
{

(r1, . . . , rn) ∈ Rn≥0 | (r1 − λ1, . . . , rn − λn) ∈ imπ∗
}

=
{

(r1, . . . , rn) ∈ Rn≥0 | (r1 − λ1, . . . , rn − λn) ∈ ker i∗
}

=
{

(r1, . . . , rn) ∈ Rn≥0 | i∗(r1 − λ1, . . . , rn − λn) = 0
}
.

Consider the map f : P × Tn → Cn defined by the formula

f
(

(r1, . . . , rn), (t1, . . . , tn)
)

:=
(
t1
√

2r1, . . . , tn
√

2rn
)
.

It is clear from Equation (2) and the description of P above that f is a surjection onto µ−1(0), and
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that it descends to a surjection

f̄ : P × T � µ−1(0)/K = X2(P ).

This map is not quite injective, but the failure of injectivity is easy to measure. If ri = 0, then it

doesn’t matter what ti is. In terms of P , the condition ri = 0 is equivalent to (r1, . . . , rn) lying

on the facet Fi. In terms of T , the statement that “it doesn’t matter what ti is” means that we

identify two elements of T whose ratio lies in the subtorus Ti ⊂ T . In other words, two elements

of P × T are sent to the same element of X2(P ) if and only if they are equivalent in the sense of

Definition 1.1. Thus f̄ descends to a continuous bijection from X1(P ) to X2(P ).

If P is a polytope, and therefore X1(P ) is compact, this proves that X1(P ) is homeomorphic to

X2(P ). In the general case where P is allowed to be a polyhedron, we need to prove that the inverse

map is continuous. Since µ−1(0) is proper over X2(P ), it suffices to prove that the composition

µ−1(0)→ X2(P )→ X1(P )

is continuous. This composition lifts to a map

µ−1(0)→ P × Tn

given by the formula

(z1, . . . , zn) 7→
(

(π∗λ)−1

(
1

2
|z1|2, . . . ,

1

2
|zn|2

)
,
(
ei arg(z1), . . . , ei arg(zn)

))
,

which is obviously continuous. Thus we have proven the following theorem.

Theorem 2.1. The spaces X1(P ) and X2(P ) are homeomorphic. In particular, X2(P ) depends

only on the polyhedron P , and not on the additional data.

Remark 2.2. We have used the word “homeomorphism” everywhere because both X1(P ) and

X2(P ) can be singular. We know that X1(P ) is smooth when P is Delzant (Theorem 1.4), and

we’ll prove the same statement about X2(P ). It is clear that when both spaces are smooth, our

homeomorphism is in fact a diffeomorphism.

2.2 Symplectic manifolds and hamiltonian actions

Definition 2.3. Let X be a real manifold. A symplectic form on X is a closed, non-degenerate

2-form ω on X. The pair (X,ω) is called a symplectic manifold. Often we will abuse notation

and refer to X itself as a symplectic manifold.

What exactly is a closed, non-degenerate 2-form? “2-form” means that at every point x ∈ X,

we have a skew-symmetric bilinear form ωx : TxX × TxX → R that varies smoothly with x.

“Non-degenerate” means that for every x ∈ X and p ∈ TxX, there exists a vector q ∈ TxX such
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that ωx(p, q) 6= 0. In particular, ωx provides an isomorphism from TxX to T ∗xX by sending p to

ωx(p,−). If we consider every x ∈ X at once, ω provides an isomorphism from the space of vector

fields (sections of the tangent bundle) to the space of 1-forms (sections of the cotangent bundle).

“Closed” means that the 3-form dω is equal to zero; since this is not a course on differential

topology and this condition will not be particularly relevant to our discussion, I won’t bother to

remind you what it means to take the exterior derivative of a differential form (though this is

certainly something that everybody should know).

Example 2.4. Consider the vector space Cn. At every point z ∈ Cn, we have a canonical identifi-

cation TzCn ∼= Cn, so we only need to give one pairing. We put

ω(z, w) := Im(z1) Re(w1)− Re(z1) Im(w1) + . . .+ Im(zn) Re(wn)− Re(zn) Im(wn).

If you’re comfortable with the language of differential forms and you identify Cn with R2n, then we

have just described the 2-form dy1 ∧ dx1 + . . .+ dyn ∧ dxn.

Example 2.5. More abstractly, if W is a complex vector space with a hermitian inner product,

the imaginary part of that inner product is a symplectic form. The standard inner product on Cn

is

(z, w) := z1w̄1 + . . .+ znw̄n,

and the imaginary part is exactly the form described in Example 2.4.

Example 2.6. Consider the 2-dimensional sphere S2. We define the symplectic form ωx(y, z) :=

x · (y × z) whenever x ∈ S2 ⊂ R3 is a unit vector and y, z ∈ TxS2 = {w ∈ R3 | x · w = 0}. It

is a fun exercise in differential forms to check that if h is the height (latitude) function and θ is

the angle (longitude) function, then ω = dθ ∧ dh. (Note that θ isn’t really a function because it is

multi-valued, but dθ is a perfectly good 1-form.)

What’s so good about symplectic manifolds? Let (X,ω) be a symplectic manifold, and let

f : X → R be a smooth function. Then df is a 1-form, and we can use the symplectic form to

convert df to a vector field f̂ such that, for all x ∈ X and q ∈ TxX, ωx(f̂x, q) = dfx(q). Flowing

along the vector field f̂ preserves both the function f and the symplectic form ω. Indeed, the

directional derivative of f at x along the vector f̂x is dfx(f̂x) = ωx(f̂x, f̂x) = 0. The fact that

flowing along f̂ preserves ω follows from the fact that ω is closed by applying Cartan’s magic

formula to the Lie derivative of ω along f̂ . We’ll suppress this computation in order to minimize

the differential topology, but it is useful to think about the example of the height function on S2.

The function f is called a hamiltonian for the vector field f̂ . Note that a vector field v admits a

hamiltonian if and only if the 1-form ω(v,−) is exact, in which case the hamiltonian is unique up

to a locally constant function.

Let K be a real Lie group acting on X. For every point x ∈ X, we get a map ρx : K → X

by letting each element of K act on x ∈ X. Differentiating this map gives us a linear map

dρx : k → TxX. This means that for every k ∈ k, we get a vector field k̂ defined by putting
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k̂x := dρx(k). One way to think about this is to say that an element of K gives an automorphism

of X, so an infinitesimal element of K (an element of k) gives an infinitesimal automorphism of X

(a vector field).

Definition 2.7. A moment map for the action of K on X is a smooth map µ : X → k∗ such that

for all k ∈ k, the smooth function µk := µ(−)(k) : X → R is a hamiltonian for k̂. We also require

that µ is equivariant with respect to the coadjoint action on k∗. (Note that when K is abelian, this

means that µ is K-invariant.)

Example 2.8. The circle group T 1 ∼= U(1) acts on C with moment map Φ : Cn → (tn)∗ ∼= R given

by

Φ(z) =
1

2
|z|2 − λ

for any λ ∈ R. More generally, Tn acts on C with moment map Φ : Cn → (tn)∗ ∼= Rn given by

Φ(z1, . . . , zn) =

(
1

2
|z1|2 − λ1, . . . ,

1

2
|zn|2 − λn

)
.

Example 2.9. If H acts on X with moment map Φ : X → h∗ and K ⊂ H is a subgroup with

inclusion i : k→ h and projection i∗ : h∗ → k∗, then

µ := i∗ ◦ Φ : X → k∗

is a moment map for the action of K on X. In particular, Equation (2) is a moment map for the

action of K on Cn. This holds more generally for group homomorphisms, not just inclusions.

Example 2.10. In this example we’ll describe the moment map for the action of U(n) on Cn,

which gives us (via Example 2.9) the moment map for any linear action of a compact group. First

of all, we should remind ourselves what u(n)∗ looks like. The group U(n) is the set of matrices

that are inverse to their adjoints, which means that the Lie algebra u(n) is the set of skew-adjoint

matrices. We identify u(n)∗ with u(n) via the Killing form, which is just given by the trace of the

product.

We claim that the map

µ : z 7→ − i
2
zz∗

is a moment map for the action of U(n) on Cn. Equivariance is clear. For every z ∈ Cn, the map

dρz : u(n)→ Cn is given by A 7→ Az. This means that we need to show that the function

µA : z 7→ − i
2

tr (Azz∗)
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is a hamiltonian function for thr field whose value at z is Az. The derivative is

dµA : w 7→ − i
2

tr (A(zw∗ + wz∗)) = − i
2

tr (Azw∗)− i

2
tr (Awz∗)

= − i
2

tr (Azw∗) +
i

2
tr (zw∗A)

= − i
2

tr (w∗Az) +
i

2
tr (w∗Az)

= Im ◦ tr (w∗Az) .

On the other hand, we have

ωz(Az, w) = Im (Azw∗) = Im ◦ tr (w∗Az) ,

so it works!

Let’s use this to rederive the formula in Example 2.8. The map from Rn to u(n) induced by

the inclusion of Tn into U(n) is given by (t1, . . . , tn) 7→ diag(it1, . . . , itn), and its dual is given by

multiplying by i and projecting onto the diagonal. Yup, it works.

Example 2.11. Consider the Lie group SO(3) of orientation preserving isometries of R3. The Lie

algebra of SO(3) is 3-dimensional, and one can check that the coadjoint action is isomorphic to the

standard action of SO(3) on R3. For any positive real number r, let S2
r be the manifold S2 with

symplectic form equal to r times the form defined in Example 2.6. It turns out that the inclusion

of S2
r into R3 as the sphere of radius r is the (unique) moment map for this action.

More generally, a coadjoint orbit always admits the structure of a symplectic manifold, and the

inclusion of that coadjoing orbit into the dual of the Lie algebra is a moment map for the coadjoint

action.

Example 2.12. In the classical example from physics, X is the manifold that parameterizes all

possible states in which the universe can be at any given instant (which for some reason is supposed

to be symplectic), K = R, the action of K on X is “the march of time”, and the moment map

µ : X → k ∼= R is “energy”.

Note that the moment map, when it exists, is unique up to a K-invariant locally constant

function. However, a moment map need not exist.

Example 2.13. The action of U(1) on T 2.

2.3 Symplectic reduction

Suppose that K acts on a symplectic manifold X with moment map µ : X → k∗. Since µ is

K-equivariant, K acts on the pre-image of the K-fixed point 0 ∈ k∗. We define the symplectic

reduction of X by K to be the quotient X//K := µ−1(0)/K. Note that this definition depends

not just on X and K, but also on the choice of moment map µ. We have already seen an example
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of a symplectic reduction: the space X2(P ) defined in Section 1.2 is the symplectic reduction of Cn

by K using the moment map defined in Equation (2) and Example 2.9.

As we pointed out in Section 1.2, there are two things that could prevent X//K from being

a manifold. First, 0 could fail to be a regular value of µ, in which case µ−1(0) might not be a

manifold. Second, even if µ−1(0) is a manifold, K might fail to act freely on it, in which case the

quotient could be singular. In fact,we’ll see that these two potential problems are related.

We say that the action of K at a point x ∈ X is locally free if the stabilizer of x is discrete. This

is equivalent to saying that the Lie algebra of the stabilizer is trivial, or that the map dρx : k→ TxX

is injective.

Proposition 2.14. The point 0 ∈ k∗ is a regular value of µ if and only if K acts locally freely

on µ−1(0). In particular, if K acts freely on on µ−1(0), then X//K is a manifold of dimension

dimX − 2 dimK.

Proof. The statement that 0 is a regular value is the statement that the differential dµx is surjective

for every x ∈ µ−1(0), or equivalently that ker dµx has dimension dimX − dimK. We have

ker dµx = {p | dµx(p) = 0}

= {p ∈ TxX | dµx(p)(k) = 0} for all k ∈ k

= {p ∈ TxX | ωx(k̂x, p) = 0} for all k ∈ k

= dρx(k)⊥,

which has dimension equal to dimX − dim dρx(k). This is equal to dimX − dimK if and only if

dρx is injective, that is, if and only if K acts locally freely at x.

Example 2.15. Using Examples 2.9 and 2.11, we can construct a moment map for the diagonal

action of SO(3) on
∏n
i=1 S

2
ri . Taking the quotient, we obtain the moduli space of spatial polygons

with edge lengths (r1, . . . , rn). It is smooth if and only if there is no subset of edges with total

length exactly equal to 1
2

∑
ri.

The computation in the proof of Proposition 2.14 can be used to show that the symplectic

reduction X//K has a natural symplectic form.

Theorem 2.16 (Marsden-Weinstein). If K acts freely on µ−1(0), then X//K has a unique sym-

plectic form ωred with the property that the pullback of ωred to µ−1(0) coincides with the restriction

of ω.

Proof. Given a point x ∈ µ−1(0), let [x] denote its image in X//K. Then we have a natural

identification T[x]X//K ∼= ker dµx/dρx(k). Since dρx(k) is the perpendicular space to ker dµx, ωx

descends to a non-degenerate skew-symmetric pairing on T[x]X//K. Both closedness and uniqueness

follow from the fact that pulling back forms from X//K to µ−1(0) is an injective operation.

Suppose, as in Example 2.9, that H acts on X with moment map Φ : X → h and K ⊂ H is

a subgroup, which we now assume to be normal. Let i : k → h be the inclusion, and consider the
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moment map µ := i∗ ◦ Φ for the action of K on X. Then the quotient group K/H acts on X//K,

and Φ descends to a map

Φ̄ : X//K → ker(i∗) ∼= (h/k)∗ ∼= Lie(H/K)∗.

The following proposition is straightforward to check, and is a good exercise to make sure that you

understand the definitions.

Proposition 2.17. The map Φ̄ is a moment map for the action of H/K on X//K.

2.4 The toric case

Let P be a rational polyhedron, and consider the action of K on Cn with moment map µ : Cn → k∗

as in Section 1.2 and Example 2.9.

Proposition 2.18. K acts locally freely on µ−1(0) if and only if P is simple. K acts freely on

µ−1(0) if and only if P is Delzant.

Proof. In Section 2.1, we implicitly showed that µ−1(0) is K-equivariantly homeomorphic to the

quotient space P×Tn/ ∼, where ∼ identifies (p, t) with (p, t′) if p ∈ F and t/t′ lies in the coordinate

subtorus T IF ⊂ Tn. (What we actually proved was the same statement after dividing by K, but

the “upstairs” proof is the same.) Thus we only need to show that for every face F , K ∩ T IF is

finite if and only if P is simple and trivial if and only if P is Delzant. It is clearly sufficient to prove

this for vertices. The subtorus K ⊂ Tn is by definition the kernel of the map from Tn to T . The

hypothesis that P is Delzant says exactly that the restriction of this map to T Iv is an isomorphism

for every vertex v of P . The slightly weaker hypothesis that P is simple says that this restriction is

a surjective homomorphism between two tori of dimension d, and therefore has a finite kernel.

Corollary 2.19. If P is Delzant, then the toric variety X2(P ) is symplectic, and the composition

X2(P ) ∼= X1(P )→ P is a moment map for the action of T .

Proof. The fact that X2(P ) is a symplectic manifold follows from Theorem 2.16 and Proposition

2.18. To see that X2(P ) ∼= X1(P ) → P is a moment map, Proposition 2.17 tells us that we only

need to check that µ−1(0)→ X2(P ) ∼= X1(P )→ P ⊂ V ∼= t∗ ⊂ (tn)∗ ∼= Rn is given by the formula

(z1, . . . , zn) 7→
(

1

2
|z1|2 − λ1, . . . ,

1

2
|z1|2 − λn

)
.

But this formula was established in the course of proving Theorem 2.1.

Remark 2.20. If P is only simple, then X2(P ) is a symplectic orbifold.
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3 A quick tour of projective algebraic geometry

In this section I’ll try to go over just enough algebraic geometry to prepare you for geometric

invariant theory. The main focus will be on the operation Proj, which eats a graded ring an

produces an algebraic variety.

3.1 Spec and Proj

Let R be a finitely generated integral domain over C. This means that for some positive integer

n, there exists a surjection C[x1, . . . , xn] � R whose kernel I ⊂ C[x1, . . . , xn] is a prime ideal. We

define SpecR to be the subset of Cn on which all of the polynomials in I vanish. You should think

of SpecR as “the simplest space whose ring of algebraic functions is equal to R.” Of course SpecR

is not just a set; it has two important topologies, namely the Zariski topology and the analytic

topology, along with sheaves of rings to go with these topologies. In these notes I’m going to ignore

these technicalities and ask you to rely on your intuition.

The definition that we gave isn’t very good because it involved choosing a generating set for R.

The better definition is that SpecR is the set of maximal ideals in R. Of course, a maximal ideal

of R is nothing more than a ring homomorphism from R to C, and such homomorphisms are in

bijection with n-tuples of complex numbers (the images of x1, . . . , xn on which the polynomials in

I vanish. As an example, let VZ be a rank d lattice, and let R = C[V ∗Z ]. If {v1, . . . , vd} is a basis for

V ∗Z , then {±v1, . . . ,±vd} is a generating set for R, and we obtain an embedding of SpecR into C2d.

However, as we explained in Remark 1.10, it is most natural to think of R as the ring of algebraic

functions on TC. That said, in most of our examples R will have an obvious set of generators.

Remark 3.1. One advantage of this definition is that it is clear that Spec is a contravariant functor:

if f : R → S is a ring homomorphism, then we can pull back maximal ideals from S to R, so we

get an induced map f∗ : SpecS → SpecR. On the other hand, an algebraic map of varieties from

X to Y induces a pull back from functions on X to functions on Y . Indeed, the functor Spec and

its adjoint Fun are inverse equivalences between the category of finitely generated integral domains

over C and the category of irreducible affine algebraic varieties.

Now suppose that R is equipped with a grading

R =
∞⊕

m=−∞
Rm.

This allows us to define an action of the group C× on the ring R by putting t · f := tmf for all

t ∈ C× and f ∈ Rm. This in turn induces an action of C× on SpecR. We refer to an element of

Rm as a function of weight m on SpecR. The functions of weight 0 are exactly the functions that

are constant along orbits.

Example 3.2. C[x], C[x0, . . . , xn], C[x, x−1], C[x, y, z, w]/〈xw − yz〉, all with various gradings.
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What is the fixed point set of the action of C× on SpecR? A point x ∈ SpecR is fixed if and

only if t · x = x for all t ∈ C×, which is the same as saying that

f(x) = f(t · x) = (t−1 · f)(x)

for every f ∈ R. If f ∈ R0, this equation is trivially satisfied. On the other hand, if f ∈ Rm for

some m 6= 0, then this equation is equivalent to the equation f(x) = 0. Thus the fixed point set is

the vanishing set of the ideal generated by all functions of nonzero weight.

Example 3.3. Revisit all of the examples above. Also S[y] for any S.

Now suppose that Rm = 0 for all m < 0, and let

R+ =
∞⊕
m=1

Rm.

Then R+ ⊂ R is an ideal, and it is exactly the vanishing ideal of the fixed point set for the action

of C× on SpecR. Thus the fixed point set is equal to Spec(R/R+) ∼= SpecR0. Note that this is

false when R has elements of negative weight!

Definition 3.4. If R =
⊕∞

m=0Rm is a graded ring, then

ProjR := (SpecRr SpecR0) /C×.

Example 3.5. C[x0, . . . , xn] where each xi has weight 1 gives Pn.

Suppose now that R0 = C and R is generated by R1. This means that we can find an isomor-

phism R ∼= C[x0, . . . , xn]/I, where xi has weight 1 for all i and I is a homogeneous ideal. Thus

we have a C×-equivariant embedding SpecR ↪→Cn+1, where the C× action on Cn+1 is given by

t·z = t−1z for every t ∈ C× and z ∈ Cn+1. The fixed point set SpecR0 maps to the origin 0 ∈ Cn+1,

thus we get an embedding

X := ProjR = (SpecRr {0}) /C× ↪→
(
Cn+1 r {0}

)
/C× = Pn.

We of course did something that we should not have done; that is, we chose a basis {x0, . . . , xn}
for R1. More naturally, if S is a polynomial ring generated in degree 1, then

ProjS ∼= P(S∗1) := (S∗1 r {0}) /C×.

In our case, R is a quotient of the polynomial ring SymR1 by a homogeneous ideal, so ProjR

embeds into P(R∗1). If we choose a basis, we can identify P(R∗1) with Pn.

More generally, suppose that R is generated by R0 and R1. In this case, R is a quotient of

SymR0
R1, SpecR is a subspace of SpecR0 ×R∗1, and ProjR is a subspace of SpecR0 × P(R∗1). In

particular, this means that we get a map from ProjR to SpecR0 whose fibers are subvarieties of
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P(R∗1). Indeed, an element of SpecR0 is represented by a surjective homomorphism from R0 to

C, and the fiber of ProjR over that element is canonically isomorphic to ProjR ⊗R0 C. For this

reason, the variety ProjR is sometimes referred to as being projective over affine.

Remark 3.6. If R is not generated by R0 and R1, then any choice of homogenous generators of R

over R0 will lead to an embedding of ProjR into the product of SpecR0 with a weighted projective

space, where the weights are exactly the positive degrees of the generators. In particular, ProjR is

always Hausdorff (which is not immediately obvious from the definition).

3.2 Line bundles on projective space

Let’s look more carefully at Example 3.5. Consider the line bundle

OPn(1) :=
(
Cn+1 r {0}

)
×C× C =

( (
Cn+1 r {0}

)
× C

)/
C×,

where C× acts by inverse scalar multiplication on both Cn and C. In other words, if we write

Cn = SpecC[x1, . . . , xn] and C = SpecC[y], then all of the variables have weight 1 for the action

of C×. The way we have defined it, OPn(1) is a space that maps to Pn by projection onto the first

factor, and the fiber of the projection over any point is a line. More generally, consider the line

bundle

OPn(r) :=
(
Cn+1 r {0}

)
×C× Cr =

( (
Cn+1 r {0}

)
× Cr

)/
C×,

where C× acts on Cr = SpecC[y] by t · y = try for all t ∈ C×. The bundle OPn(−1) is called the

tautological line bundle because there is a natural map from OPn(−1) to Cn with coordinates

x1y, . . . , xny that identifies the fiber over [z] ∈ Pn with the line C[z] ⊂ Cn+1. Then bundle OPn(1)

is therefore called the anti-tautological line bundle.

For any two integers r and s, we can consider the tensor product of C×-representations Cr⊗Cs.
The group C× acts by

t · (z1 ⊗ z2) = (t · z1)⊗ (t · z2) = trz1 ⊗ tsz2 = tr+s(z1 ⊗ z2),

thus we have an isomorphism of C×-representations Cr ⊗ Cs ∼= Cr+s. We also see that C0 is the

trivial representation, and that for any r, C−r is dual to Cr. As a result, we obtain the analogous

statement for line bundles.

Proposition 3.7. OPn(0) is the trivial line bundle, and we have canonical isomorphisms

OPn(r)∗ ∼= OPn(−r) and OPn(r)⊗OPn(s) ∼= OPn(r + s)

for all r, s ∈ Z.

We can also describe the space of sections of OPn(r) for any r. A section of OPn(r) is a map

from Pn to OPn(r) such that, when we compose it with the projection back down to Pn, we get the

identity endomorphism of Pn.
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Proposition 3.8. If n > 0, then the space of sections of OPn(r) is canonically isomorphic to the

degree r part of C[x0, . . . , xn]. In particular, OPn(r) has no sections when r is negative, and lots of

sections when r is positive.

Proof. A section of OPn(r) is the same as a C×-equivariant map from Cn+1 r {0} to the product(
Cn+1 r {0}

)
×Cr that’s equal to the identity on the first coordinate. This last condition allows us

to drop the first coordinate entirely and look at C×-equivariant maps from Cn+1 r {0} to Cr. This

means that we are looking for functions f on Cn+1r{0} such that for all t ∈ C× and z ∈ Cn+1r{0},

(t · f)(z) = f(t−1 · z) = t−1 · f(z) = trf(z) = (trf)(z).

In other words, we are looking for functions on Cn+1 r {0} of weight r. Since n > 0, functions on

Cn+1 r {0} are the same as functions on Cn+1, and we’re done.

Remark 3.9. Just for fun, let’s examine the two low-dimensional cases not treated by Proposition

3.8. If n = 0, then P0 is a point, and OP0(r) is the trivial bundle for all r, which has a 1-dimensional

space of sections. So in this case the statement of Proposition 3.8 fails when r < 0. If n = −1,

then P−1 = ∅, and OP−1(r) has a unique section for all r. So in this case Proposition 3.8 fails when

r = 0.

Proposition 3.10. If n ≥ 0, then the ring C[x0, . . . , xn] is canonically isomorphic to the ring of

functions on the tautological line bundle OPn(−1). Elements of degree r are functions that restrict

to a polynomial of degree r on each fiber.

Proof. It is clear that the ring of functions on OPn(−1) is graded by fiber-wise degree. A function

that is constant on fibers is nothing more than a function on the base, of which there are only

constants. A function that is linear on fibers is a section of the dual bundle OPn(1). More generally,

a function that has degree r on fibers is a section of the tensor product of r copies of the dual

bundle. Proposition 3.7 tells us that this tensor product is isomorphic to OPn(r), and if n > 0 then

Proposition 3.8 tells us that the sections of OPn(r) are the degree r elements of C[x1, . . . , xn]. The

reader is invited to work out the n = 0 case for his or herself.

3.3 Line bundles on Proj(R)

Much of what we did in Section 3.2 can be carried out when C[x1, . . . , xn] is replaces by a more

general non-negatively graded ring R. It works best when R is generated by R0 and R1, so we will

make that assumption for the rest of this section.

Let X = ProjR, and for any integer r, let

OX(r) := (SpecRr SpecR0)×C× Cr.

It is clear that, when R is a polynomial ring generated in degree 1, this agrees with our definition

in Section 3.2. Let us show that OX(r) is a line bundle on X. If we project onto the first factor, we
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get a map from OX(r) to X. Let x be an element of X, and let x̃ be a lift of x to SpecR. The fiber

over x of the projection is isomorphic to the quotient of Cr by the stabilizer group of x̃ ∈ SpecR.

Since x̃ /∈ SpecR0, we know that this stabilizer group is finite. We would like to show that this

stabilizer group is trivial.

Again, since x̃ /∈ SpecR0, there must be an element of R+ that does not vanish at x̃. Since R

is generated by R0 and R1, there must be an element f ∈ R1 that does not vanish at x̃. Then for

every t ∈ C×,

f(t · x̃) = (t−1 · f)(x̃) = (t−1f)(x̃) = t−1f(x̃) 6= f(x̃),

so the stabilizer group of x̃ is trivial.

Remark 3.11. If R were not generated in degree 1, we could do something similar with orbi-

bundles over orbifolds.

It is almost the case that Proposition 3.10 carries over unchanged to this setting, with C[x0, . . . , xn]

replaced by R and Pn replaced by X. The only tricky part is finding the right analogue of the

n ≥ 0 condition. The purpose of this condition was to ensure that all functions on Cn+1 r {0} of

non-negative weight come from Cn+1. We need to replace that with the condition that all functions

on SpecRrSpecR0 of non-negative weight come from SpecR. This is true when SpecR is smooth

and R0 ( R; see Example 3.14 for a singular example in which the condition fails.

Proposition 3.12. The ring of functions on OX(−1) is canonically isomorphic to the ring of

functions on SpecRrSpecR0 with non-negative weight. For any non-negative integer r, a function

on SpecR r SpecR0 of weight r for the action of C× corresponds to a function on OX(−1) that

restrict to a polynomial of degree r on each fiber.

Corollary 3.13. The ring R maps to the ring of functions on OX(−1). If R0 ( R (that is,

if SpecR0 6= SpecR) then this map is an inclusion. If in addition SpecR is smooth, then this

inclusion is an isomorphism.

Example 3.14. Let R = C[x4, x3y, xy3, y4] ⊂ C[x, y], where x and y both have degree 1. Then

SpecR is the image of the map from C2 to C4 taking (u, v) to (u4, u3v, uv3, v4), which is 2-

dimensional, and SpecR0 is the image of the origin along the same map, which is a singular point.

To get the ring of functions on SpecRr SpecR0, we need to take R and invert x3y and xy3, since

these guys vanish only at the origin. In particular, we have the function (x3y)−1(x4)(xy3) = x2y2,

which is not the restriction of an element of R.

Remark 3.15. The restriction map from R to functions on SpecR r SpecR0 in Example 3.14 is

almost surjective. The function x2y2 is not in the image, but its square is. In general, the ring of

functions of non-negative weight on SpecRr SpecR0 is isomorphic to the integral closure of R.

Let us rephrase some of these observations in more geometric language. Consider the action of

C× on O(−1) is by scalar multiplication on the fibers. There is a natural C×-equivariant map

π : OX(−1)→ SpecR
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taking a point of OX(−1) to the maximal ideal in R consisting of elements which, when regarded

as functions on OX(−1), vanish at that point. Equivalently, an element of OX(−1) is represented

by a pair

(x̃, z) ∈ (SpecRr SpecR0)× C−1.

If z 6= 0, then we map this element to z−1 · x̃ ∈ SpecR r SpecR0. (Let’s check that this makes

sense. Since z ∈ C−1, we have t · z = tz for all t ∈ C×. Then (x̃, z) should map to the same place

as (t · x̃, t · z), which it does.) If z = 0, we map it to the limit as t approaches zero of t−1 · x̃. To

see that this limit exists, we need to check that for all f ∈ R, the limit

lim
t→0

f(t−1 · x̃) = lim
t→0

(t · f)(x̃)

exists. Indeed, this limit is equal to f0(x̃), where f0 is the projection of f onto R0.

Proposition 3.16. The preimage of SpecR0 ⊂ SpecR along the map π : OX(−1) → SpecR is

the zero section of OX(−1), and π restricts to an isomorphism from the complement of the zero

section to SpecRr SpecR0. If R0 ( R, then π is surjective.

Proof. All but the last statement are immediate consequences of the geometric description of π

above. Note that the map from the zero section (which is isomorphic to X) to SpecR0 is exactly

the map discussed near the end of Section 3.1. Surjectivity comes from the description that we

gave of the fibers of that map, which are manifestly nonempty.

Example 3.17. Redo the example of OPn(−1) mapping to Cn.

The following proposition follows immediately from the definitions.

Proposition 3.18. Suppose that R is generated by R1, so that X ↪→ P(R∗1). For every integer r,

OX(r) is the restriction of OP(R∗1)(r) to X.

Remark 3.19. One way to express the phenomenon in Example 3.14 is to say that the restriction

map from sections of OP3(1) to sections of OX(1) is not surjective. The standard terminology is

that the inclusion X ⊂ P3 is not projectively normal.

4 Geometric invariant theory: the third and fourth constructions

Roughly speaking, geometric invariant theory (GIT) is a prescription for taking quotients in alge-

braic geometry. Both the third and fourth construction from Section 1 would be described by an

expert as “the GIT presentation of the toric variety associated to P .” This is somewhat confusing,

since the two constructions are superficially very different. Our goal for this section is to define

GIT quotients in general, and explain why the the third and fourth construction in Section 1 are

both part of the same theory.
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4.1 Reductive group actions

An algebraic group G is reductive if it has a compact subgroup K ⊂ G with the property that,

for any linear representation W of G, the inclusion WK ⊂ WG is an equality.1 This subgroup K

is unique up to conjugation, and is known as a maximal compact subgroup. Examples include

GL(n;C), which has maximal compact subgroup U(n), and SL(n;C), which has maximal compact

subgroup SU(n). The most important example for us will be the torus TnC (and its subtori), which

has a unique maximal torus Tn. The relevance of our definition is that we have an “averaging”

function W → WK = WG taking w to
∫
K(k · w) dk with respect to Haar measure; note that we

have no such projection when G is not reductive. This feature of reductive groups is sometimes

known as Weyl’s unitary trick.

An action of G on a ring R induces an action on SpecR. Furthermore, if R admits a grading

R =
∞⊕
m=0

Rm

that is compatible with the action of G (that is, the actions of G and C× must commute), then G

acts on ProjR, as well as on all of the line bundles O(r) if R is generated in degrees 0 and 1. The

following lemma will be useful to us in the next section.

Lemma 4.1. Suppose that G is a reductive group acting on an affine variety X = SpecR, and that

Y,Z ⊂ X are disjoint subvarieties preserved by the action of G. Then there exists a G-invariant

function f ∈ R that takes that value 0 on Y and 1 on Z.

Proof. Let I, J ⊂ R be the ideals of functions that vanish on Y and Z, respectively. The condition

that Y ∩Z = ∅ is equivalent to the statement that I + J = R, thus there exists a pair of functions

f ∈ I and g ∈ J such that f + g = 1. By averaging f and g, we obtain the functions that we

want.

4.2 GIT quotients

Let G be a reductive group acting on R; suppose that we want to take a quotient of SpecR by

G. A naive quotient would be really bad—for example, the orbits of G on SpecR are usually not

closed. Here’s another idea; the following construction is called an affine GIT quotient.

Definition 4.2. (SpecR)//G := SpecRG.

In order to justify the idea that this construction can be regarded as some kind of a “quotient,”

we state and prove the following proposition.

Proposition 4.3. There is a surjective map from SpecR to (SpecR)//G. Two points in SpecR

lie in the same fiber of this map if and only if the closures of their G-orbits intersect nontrivially.

1This is not the standard definition, but it will do for our purposes.
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Before proving Proposition 4.3, let’s use it to see both how well behaved and how poorly behaved

this quotient can be.

Example 4.4. Consider two different actions of C× on C2, as well as the anti-diagonal action of

C× on the complement of a coordinate line in C2.

Proof of Proposition 4.3. To see that the natural map from SpecR to SpecRG is surjective, we need

to show that for any maximal ideal m ⊂ RG, there exists a maximal ideal in R whose intersection

with RG is m. Let I = R · m ⊂ R. We claim that I is a proper ideal, that is, that I does not

contain 1. Indeed, suppose that I did contain 1. This means that there exists f1, . . . fn ∈ R and

m1, . . .mn ∈ m such that f1m1 + . . . fnmn = 1. By averaging each fi over the maximal compact

subgroup K ⊂ G, we may assume that each fi is G-invariant, but this contradicts the fact that m

is a proper ideal in RG. Any maximal ideal of R containing I has the property that its intersection

with RG is a proper ideal of RG containing m, and is therefore equal to m.

Next we show that the fibers are what we say they are. Since any G-invariant function is

constant on closures of orbits, elements of RG can’t distinguish between two points whose orbit

closures intersect, therefore two such points live in the same fiber. Conversely, if x and y are

elements of SpecR whose orbit closures do not intersect; then Lemma 4.1 says that we can find a

G-invariant function that distinguishes x from y, thus they have different images in X//G.

It turns out that we can get much cooler quotients (even of affine varieties!) using Proj rather

than Spec. Suppose that G is a reductive group acting on R =
⊕∞

m=0Rm. We can take Definition

4.2 as motivation for the following definition of a projective GIT quotient.

Definition 4.5. (ProjR)//G := ProjRG.

Before proceeding, we warn the reader to be careful of the terrible notation in this definition!

We define that quotient of ProjR by G in terms of the ring R, but it is not possible to recover the

ring R from the space ProjR. Under suitable hypotheses, Corollary 3.13 says that R is the ring of

functions on the total space of the tautological line bundle. Thus in this case, the projective GIT

quotient is determined by the action of G on the line bundle O(−1). A lift of a G-action from X

to OX(−1) is often called a linearization of the action.

We would now like to state and prove an analogue of Proposition 4.3, but the situation is

somewhat more complicated. The problem is that there is not a natural map from ProjR to

ProjRG. Indeed, the inclusion of graded rings from RG into R induces a C× equivariant surjection

from SpecR to SpecRG. However, there are some elements of SpecR r SpecR0 that land in

SpecRG0 ⊂ SpecRG.

Example 4.6. Let R = C[x1, . . . , xn, y], where xi has degree 0 for all i and y has degree 1. Let

G = C× act with weight 1 on each xi and weight 0 on y.

Definition 4.7. Suppose that G is a reductive group acting on R, and let X = ProjR. Let x be an

element of X, and let x̃ be any lift of x to SpecRr SpecR0. The element x is called semistable2

2Note that this condition does not depend on the choice of x̃.
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if there exists an element f ∈ RG+ of such that f(x̃) 6= 0. Equivalently, x is semistable if its image

in SpecRG does not lie in SpecRG0 . A point which is not semistable is called unstable.

We will denote the semistable set, which is clearly open, by Xss ⊂ X, and we denote its

complement by Xus ⊂ X. Note that the definition is exactly tailored so that there will be a well-

defined map from Xss to X//G; we will analyze this map in greater detail shortly. Note also that,

just as the definition of X//G is not determined by the action of G on X, the definition of Xss

is also not determined by the action of G on X. If R is generated by R0 and R1, then Remark

3.15 tells us that it is determined by the action of G on OX(−1). Indeed, we give the geometric

interpretation of the semistable locus below.

Proposition 4.8. Suppose that R is generated by R0 and R1. Let x be an element of X, and let

` be a nonzero element of the line OX(−1)x. Then x is semistable if and only if the closure of

G · (x, `) in OX(−1) is disjoint from the zero section.

Proof. Let x̃ = π(x, `) ∈ SpecR r SpecR0, where π : OX(−1) → SpecR is the map discussed in

Proposition 3.16. This map is clearly G-equivariant, thus Proposition 3.16 implies that the closure

of G · (x, `) in OX(−1) is disjoint from the zero section if and only if the closure of G · x̃ is disjoint

from SpecR0. By Lemma 4.1, this is equivalent to the existence of a G-invariant function that

vanishes on SpecR0 and takes the value 1 at x̃. Since the ideal of functions that vanish on SpecR0

is equal to R+, we’re done.

Example 4.9. Vary the weight of y in Example 4.6.

Now let’s go ahead and prove the projective analogue of Proposition 4.3.

Proposition 4.10. There is a surjective map from Xss to X//G. Two points in Xss lie in the same

fiber of this map if and only if the closures of their G-orbits in Xss (not in X) intersect nontrivially.

Proof. The fact that Xss surjects onto X//G follows immediately from Proposition 4.3 and the

definition of Xss. This map is clearly G-invariant; the fact that it is constant not just on orbits but

also on closures of orbits follows from the fact that X//G = ProjRG is Hausdorff.

Let x and y be elements of Xss, and lift them to element x̃ and ỹ of SpecR. If the closures

of the G-orbits through x and y don’t intersect in Xss, then the closures of the G × C×-orbits

through x̃ and ỹ don’t intersect in SpecR r Z(RG+), where Z(RG+) is the vanishing locus of the

ideal generated by all G-invariant functions of positive weight. (Note that this locus is bigger

than SpecR0 = Z(R+); the difference is exactly the stuff lying over Xus.) We would now like to

apply Lemma 4.1, but it’s a little tricky because SpecR r Z(RG+) is not affine. The lemma tells

us that we can find an open neighborhood of x̃ and ỹ and a G × C× invariant function defined

on that neighborhood that distinguishes x̃ from ỹ. This is exactly what we need to show that x̃

and ỹ have different C×-orbits in SpecRG, or equivalently that x and y have different images in

ProjRG = X//G.

Consider the relation ∼ on Xss given by putting x ∼ y if the closures of the G-orbits through

x and y intersect. The following statement follows from Proposition 4.10.
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Corollary 4.11. The projective GIT quotient X//G is homeomorphic to Xss/∼.

Remark 4.12. Technically we have only shown that there is a continuous bijection from Xss/∼
to X//G. We will leave continuity of the inverse in the noncompact case as a painful exercise. In

fact, we will do this quite a few more times in this section and the next.

Example 4.13. Lots of actions of C× on C2.

Proposition 4.10 has another nice corollary that will be very important in Section 5. We call

a point x ∈ Xss polystable if its G-orbit in Xss is closed, and we denote the polystable locus by

Xps.

Corollary 4.14. Every G-orbit in Xss has a unique polystable orbit in its closure. Thus the natural

inclusion of Xps into Xss induces a homeomorphism3

Xps/G→ X/∼ ∼= X//G.

Proof. The fact that every G-orbit in Xss has at least one polystable orbit in its closure follows

immediately by induction on the dimension of the orbit. For uniqueness, suppose that x′ and x′′

are polystable points in the closure of the orbit through x. Then x′ ∼ x ∼ x′′, and Proposition

4.10 imples that ∼ is an equivalence relation. Thus x′ ∼ x′′, which means that they lie in the same

G-orbit.

This is a convenient time to make one more definition. We won’t use it much, but it’s important

to know. We call a point x ∈ X stable if it is polystable and its stabilizer subgroup in G is finite;

we denote the locus of stable points by Xs. It is a fact that the stable locus is open (either empty

or dense); note that this is not in general true of the polystable locus. Thus the geometri quotient

Xs/G is an orbifold and an open (dense or empty) subset of X//G.

4.3 The toric invariant ring (the fourth construction)

We are now ready to realize the construction of X3(P ) in Section 1.3 as a GIT quotient. As in

Section 1, let λ1, . . . , λn be integers. Let R = C[x1, . . . , xn, y] with deg xi = 0 for all i and deg y = 1;

then

ProjR ∼= SpecC[x1, . . . , xn] = Cn.

Let TnC act on R by putting

(t1, . . . , tn) · xi = t−1
i xi for all i and (t1, . . . , tn) · y := tλ1

1 . . . tλnn y.

We thus obtain an action of TnC on R such that the induced action on ProjR is the obvious one.

3See Remark 4.12.
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Remark 4.15. It may be easier to think about what we just did geometrically. We have

SpecC[x1, . . . , xn] = Cn ∼=
(

(Cn × C) r (Cn × {0})
)/

C× = ProjC[x1, . . . , xn, y].

We know how we want TnC to act on Cn, and we can achieve this by letting it act any which way on

the C in Cn ×C. This means that we know how TnC has to act on x1, . . . , xn, but we get to choose

how it acts on y. That’s what λ1, . . . , λn are for (note that Zn ∼= Hom(TnC ,C×) is exactly the set

that indexes possible actions).

Now suppose that, in addition to λ1, . . . , λn ∈ Z, we have a real vector space V with lattice VZ

and a collection of primitive vectors a1, . . . , an ∈ V ∗Z . This allows us to define a polytope P ⊂ V

along with facets Fi ⊂ P for all i. We also have a subtorus KC ⊂ TnC , defined as the kernel of the

map from TnC to TC = V ∗/V ∗Z given by a1, . . . , an. Since KC sits inside of TnC , the action of TnC on

R induces an action of KC.

Recall from Section 1.4 our definition of the cone Σ ⊂ V ×R≥0, the semigroup SP = Σ∩(VZ×N),

and the and the semigroup ring C[SP ], which is graded by the last coordinate.

Proposition 4.16. We have a natural isomorphism C[SP ] ∼= RKC, and therefore

X4(P ) = ProjC[SP ] ∼= ProjRKC = Cn//KC.

Proof. Recall that in Section 2.1 we identified P with an affine linear slice of Rn≥0, with the lattice

points of P going to the intersection of the slice with Nn. Here we will use the same trick to identify

Σ with a linear slice of Rn≥0×R≥0, with SP going to the intersection of the slice with Nn×N. The

lattice points in this slice will correspond exactly to KC-invariant monomials in R, and we’ll be

done.

We will make the simplifying assumption that the vectors a1, . . . , an span V ∗Z over the integers.

Recall from Lemma 1.8 that this implies that K is connected (and the same for KC), and therefore

that k∗Z
∼= Hom(KC,C×).

Consider the linear map φ : V × R→ Rn × R given by the formula

φ(v, r) := (a1(v) + λ1r, . . . , an(v) + λnr, r).

Note that φ is injective; if we know φ(v, r), then we know r, which means that we know ai(v) for

all i, and therefore we know v. The preimage of Rn≥0 × R≥0 is equal to Σ (by definition), and the

preimage of Nn × N is equal to SP . (Here we use our assumption to conclude that if ai(v) is an

integer for every i, then v ∈ VZ). Thus we may identify C[SP ] with the monomial ring

C[xr11 . . . xrnn y
r | (r1, . . . , rn, r) ∈ im(φ)].

We must now show that these are exactly the KC-invariant monomials.
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Observe that we have an exact sequence

0→ V × R φ−→ Rn × R ψ−→ k∗ → 0,

where

ψ : (r1, . . . , rn, r) := i∗(λ1r − r1, . . . , λnr − rn).

The vector (λ1r − r1, . . . , λnr − rn) ∈ Zn ∼= (tn)∗ ∼= Hom(TnC ,C×) is precisely the weight of the

monomial xr11 . . . xrnn y
r for the action of TnC , and i∗(λ1r− r1, . . . , λnr− rn) ∈ k∗Z

∼= Hom(KC,C×) is

the weight of the same monomial for the action of KC. Thus the image of φ is equal to the kernel

of ψ, which is the indexing set for monomials that are fixed by KC.

Remark 4.17. The proof is somewhat more difficult if we do not assume that a1, . . . , an spans V ∗Z .

In this case C[SP ] only includes into the monomial ring C[xr11 . . . xrnn y
r | (r1, . . . , rn, r) ∈ im(φ)],

because some of those monomials will come from non-integral elements in Σ. On the other hand,

those monomials will in general only be fixed by the connected component of the identity in KC,

rather than by the whole group. It turns out that the monomials fixed by all of KC are exactly

those that come from SP . Can anyone think of a proof of this fact?

Example 4.18. Take n = d = 1, let a1 be 2 times a primitive vector, and let λ1 = 0. Then

KC = {±1} and RKC = C[x2
1, y].

Example 4.19. Some examples with C× acting on Cn.

4.4 The toric semistable locus (the third construction)

Recall our definition of the set Uλ ⊂ Cn from Section 1.3:

Uλ := {z ∈ Cn | Fz 6= ∅}, where Fz :=
⋂
zi=0

Fi.

Proposition 4.20. Uλ ⊂ Cn = ProjR is the semistable locus for the action of KC on R.

Proof. By definition, z = (z1, . . . , zn) if and only if there is a monomial xr11 . . . xrnn y
r such that

• (r1, . . . , rn, r) lies in the image of φ (the monomial has to be KC-invariant)

• r > 0 (the monomial has to lie in R+)

• ri = 0 whenever zi = 0 (the monomial can’t vanish at z).

Pulling back by φ, this means that we are looking for (v, r) ∈ SP such that r > 0 and ai(v)+λir = 0

whenever zi = 0. This last equation is equivalent to the condition that 1
rv ∈ Fz, thus z is stable if

and only if Fz contains an element of VQ. Since all of the facets have integral slope, this happens

if and only if Fz 6= ∅.

Combining Propositions 4.16 and 4.20 with Proposition 4.10, we obtain the following result.
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Corollary 4.21. X3(P ) is TC-equivariantly isomorphic to X4(P ).

We’ll conclude this section by showing that a Delzant polyhedron gives rise to a smooth toric

variety (in the algebraic setting). The proof is very similar to the proof of Proposition 2.18.

Proposition 4.22. If P is Delzant, then KC acts freely on the semistable locus. In particular, we

have (Cn)s = (Cn)ps = (Cn)ss, and X3(P ) = (Cn)s/KC is smooth.

Proof. We need to show that every semistable point z ∈ Cn has trivial stabilizer in KC. An element

(t1, . . . , tn) ∈ TnC stabilizes z if and only if ti = 1 whenever zi 6= 0. That means that the stabilizer

of z is largest when lots of its coordinates are 0, that is, when Fz is a vertex. Suppose that Fz is a

vertex, and let I = {i | zi = 0}, so that the stabilizer of z is T IC ⊂ TnC . By Definition 1.2, {ai | i ∈ I}
is a basis for V ∗Z . This means that the map from T IC to TC is an isomorphism, and therefore that

T IC ∩KC is the trivial group.

5 The Kempf-Ness theorem: the second and third constructions

The Kempf-Ness theorem says that, if G is a reductive algebraic group acting linearly on a complex

vector space, the the GIT quotient by G is homeomorphic to the symplectic quotient by the maximal

compact subgroup K ⊂ G. When G and K are abelian, this says exactly that the symplectic toric

variety X1(P ) ∼= X2(P ) is homeomorphic to the algebraic toric variety X3(P ) ∼= X4(P ). Note that

it will take a little bit of work to make this statement precise; in particular, we need to match up

the freedom in the symplectic quotient (the choice of moment map) with the freedom in the GIT

quotient (the choice of linearization).

5.1 The simplest case

Let’s begin with the case where G = C× and K = U(1). Let G act on Cn be the forumla

t · (z1, . . . , zn) = (tα1z1, . . . , t
αnzn),

where α1, . . . , αn ∈ Z. Note that any linear action of G has this form.

Remark 5.1. This is a toric action if and only if the integers α1, . . . , αn are relatively prime, that

is, if and only if no nontrivial element in G acts trivially.

Let R = C[x1, . . . , xn, y] with deg xi = 0 and deg y = 1, so that ProjR = Cn. We would like to

lift the action of G on Cn to an action on R, that is, to choose a linearization of the G-action on

Cn. Such an action must have the form

t · xi = t−αixi and t · y = tλy

for some λ ∈ Z. Meanwhile, the subgroup K ⊂ G acts on Cn with moment map

µ(z1, . . . , zn) =
1

2
α1|z1|2 + . . .+

1

2
αn|zn|2 − λ
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(see Examples 2.8 and 2.9).

Proposition 5.2 (Kempf-Ness for C×). We have an inclusion µ−1(0) ⊂ (Cn)ps, and for every

polystable element z ∈ Cn, (G · z)∩ µ−1(0) is a single K-orbit. Thus we obtain a homeomorphism4

X2(P ) = Cn//K = µ−1(0)/K → (Cn)ps/G ∼= Cn//G = X3(P ).

Before proving Proposition 5.2 in general, let’s check that it works when αi = 1 for all i. If

λ < 0, then µ−1(0) = ∅ = (Cn)ss. If λ = 0, then µ−1(0) = {0} = (Cn)ps. If λ > 0, then µ−1(0) is

a sphere of dimension 2n − 1, and (Cn)ps = (Cn)ss = Cn r {0}. We have C× = U(1) · R>0. The

action of R>0 on (Cn)ps can be used to take every element to a unique element of µ−1(0), and then

we divide by U(1) to get Pn−1 in both cases.

The proof for arbitrary α1, . . . , αn works according to the same principle, namely that the action

of R>0 ⊂ C× can be used to shrink (Cn)ps down to µ−1(0).

Proof of Proposition 5.2. First of all, we may as well assume that αi 6= 0 for all i, otherwise C×

acts trivially on the ith coordinate and we can just factor it out. For any z ∈ Cn, define Ψz : R→ R
by the formula

Ψz(x) =
1

2
|eα1xz1|2 + . . .+

1

2
|eαnxzn|2 − 2λx.

We then have

Ψ′z(x) = α1|eα1xz1|2 + . . .+ αn|eαnxzn|2 − 2λ = 2µ(ex · z)

and

Ψ′′z(x) = α2
1|eα1xz1|2 + . . .+ α2

n|eαnxzn|2 ≥ 0.

The equation for the first derivative tells us that x is a critical point of Ψz if and only if µ(ex ·z) = 0,

and the equation for the second derivative tells us that Ψz(x) is convex. If z 6= 0, then the function

is strictly convex (the second derivative is always positive), and therefore has at most one critical

point. In other words, the action of R>0 ⊂ C× may or may not be able to take z to an element of

µ−1(0), but if so, that element is unique. This statement is of course true in the degenerate case

when z = 0.

The next question that we need to ask is: for which z does Ψz have a critical point? We would

like to show that Ψz has a critical point if and only if z is polystable, in which case we’ll be done.

Let’s assume first that λ 6= 0. In this case 0 ∈ Cn is not semistable. Since 0 is the only point that

could possibly lie at the boundary of any orbit, this means that all orbits in the semistable locus

are closed, in other words, (Cn)ss = (Cn)ps.

Since Ψz is convex and λ 6= 0, Ψz has a critical point if and only if

lim
x→−∞

Ψz(x) =∞ = lim
x→∞

Ψz(x).

The first equality says that, either there exists some i such that zi 6= 0 and αi < 0, or λ < 0.

4See Remark 4.12.
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The second equality says that, either there exists some i such that zi 6= 0 and αi > 0, or λ > 0.

Together, they say that there exists some i such that zi 6= 0 and αi has the opposite sign from λ.

This is exactly the condition that there exists a G-invariant monomial of positive degree that does

not vanish on z (namely x
|λ|
i y
|αi|). Thus Ψz has a critical point if and only if z is semistable. Since

all semistable points are polystable, we are done.

Now suppose that λ = 0. In this case, every element of Cn is semistable. This can be seen

algebraically, by noting the the monomial y is a positive degree invariant element of R that vanished

nowhere on Cn, or geometrically, using Proposition 4.8. Not every element is polystable, however;

z fails to be polystable if z 6= 0 but z has 0 in its orbit closure, which happens if and only if αi has

the same sign for every i such that zi 6= 0. The function Ψz has a critical point if and only if

lim
x→−∞

Ψz(x) =∞ = lim
x→∞

Ψz(x) or z = 0.

This means that either z = 0 or there exists i and j such that zi 6= 0 6= zj and αi and αj have

opposite signs. This is equivalent to polystability, so we are done.

5.2 The toric case

In this section we will state and prove the Kempf-Ness theorem in the case that matters to us. That

is, we start with the data a1, . . . , an ∈ V ∗Z r {0} and λ1, . . . , λn ∈ Z, which determine a polyhedron

P ⊂ V . We define K ⊂ Tn and G = KC ⊂ TnC as in Section 1, with everything in sight acting on

Cn. We use λ1, . . . , λn to define both the moment map for the action of K and the linearization of

the action of KC. More precisely, we define µ : Cn → k∗ by the formula

µ(z1, . . . , zn) = i∗
(

1

2
|z1|2 − λ1, . . . ,

1

2
|zn|2 − λn

)
,

and we define the action of KC ⊂ TnC on R = C[x1, . . . , xn, y] by putting

(t1, . . . , tn) · y = tλ1
1 . . . tλnn y.

The statement of our Theorem will be word-for-word the same as the statement of Proposition

5.2, which was a special case.

Theorem 5.3 (Toric Kempf-Ness). We have an inclusion µ−1(0) ⊂ (Cn)ps, and for every polystable

element z ∈ Cn, (G · z) ∩ µ−1(0) is a single K-orbit. Thus we obtain a homeomorphism5

Cn//K = µ−1(0)/K → (Cn)ps/G ∼= Cn//G.

Proof. Our proof will model the proof of Proposition 5.2. For every z ∈ Cn, consider the map

5See Remark 4.12.

30



Ψz : k→ R given by the formula

Ψz(β) =
1

2
|eβ1z1|2 + . . .+

1

2
|eβnzn|2 − 2(λ1β1 + . . .+ λnβn)

for all β ∈ k ⊂ tn ∼= Rn. Then for any γ ∈ k, we have

∂γΨz(β) =
d

dt

∣∣∣
t=0

Ψz(β + tγ) = γ1|eβ1z1|2 + . . .+ γn|eβnzn|2 − 2(λ1γ1 + . . .+ λnγn) = 2µ(eβ · z)(γ)

and

∂2
γΨz(β) = γ2

1 |eβ1z1|2 + . . .+ γ2
n|eβnzn|2 ≥ 0.

Thus Ψz is convex, and the critical points are precisely the elements β ∈ k such that µ(eβ · z) = 0.

As in the z = 0 case from Proposition 5.2, it is possible for Ψz to fail to be strictly convex, in

which case it will have more than one critical point. Indeed, we have ∂2
γΨz(β) = 0 if and only if for

every i, we have either zi = 0 or γi = 0. This is equivalent to saying that the element eγ ∈ KC fixes

z; we denote the set of such γ by kz. It is nothing but the Lie algebra of the stabilizer subgroup of

z in K.

Thus we find that Ψz has a critical point if and only if there exists an element β ∈ k such that

µ(eβ · z) = 0. That β will not be unique; rather, it will be unique up to translation by the linear

space kz. But this means that eβ · z will be unique. Thus, as in the case of Proposition 5.2, we

have reduced the proof of Theorem 5.3 to showing that Ψz has a critical point if and only if z is

polystable.

The function Ψz has a critical point if and only if the following two conditions hold:

(a) for every β ∈ kz, β1λ1 + . . .+ βnλn = 0 (otherwise Ψz(β) can be made arbitrarily negative by

choosing β ∈ kz, and therefore cannot have a minimum)

(b) for every β ∈ kr kz, we have lim
t→∞

Ψz(tβ) =∞.

(Compare this to the analogous statement in the proof of Proposition 5.2, which had two cases

depending on whether or not λ = 0.) Condition (b) is equivalent to the following:

(b′) for every β ∈ kr kz, either (∃ i such that βi > 0 and zi 6= 0) or (β1λ1 + . . .+ βnλn < 0),

which is in turn equivalent to the following:

(b′′) for every β ∈ kr kz, either lim
t→∞

etβ · z does not exist or (β1λ1 + . . .+ βnλn < 0).

Now let’s think about what it means for z to be polystable. We know from Proposition 4.8

that z is semistable if and only if the KC-orbit through (z, 1) ∈ Cn × C ∼= OCn(−1) does not

have any points in Cn × {0} lying in its closure. By Fact 1.14, it is enough to check this on one-

parameter subgroups, and we can certainly restrict our attention to one-parameter subgroups in

the “noncompact” directions. For directions β ∈ kz, this means that β1λ1 + . . .+ βnλn ≥ 0. Since

−β ∈ kz as well, we might as well say β1λ1 + . . .+ βnλn = 0; that’s condition (a). For β ∈ kr kz,
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it means that either limt→∞ e
tβ · z does not exist, or β1λ1 + . . .+ βnλn ≥ 0. However, if this limit

exists and β1λ1 + . . . + βnλn = 0, then the orbit through z will not be closed in the semistable

locus; indeed, the limit will lie in its closure. Thus, for z to be polystable, for all β ∈ kr kz, either

the limit does not exist or β1λ1 + . . . + βnλn < 0. That’s condition (b′′), and that completes the

proof.

5.3 The general (nonabelian) case

Let G be a reductive group acting linearly on a vector space W , which means that we have a

homomorphism ρ : G → GL(W ); for simplicity we will assume that ρ is injective. If we choose a

hermitian form on W , then K := ρ−1(U(W )) is the maximal compact subgroup of G; recall from

Example 2.5 that the imaginary part of the hermitian form is symplectic.

Consider an element

λ ∈ Hom(G,C×) ∼= (g∗)G ∼= (k∗)K .

First we use λ to define a linearization of the action of G on W . Let R = SymW ∗ ⊗ C[y], so that

ProjR ∼= Spec(SymW ∗) ∼= W . We extend the action of G from SymW ∗ to R by putting

g · y = λ(g)y for all g ∈ G.

Next we use λ to define a moment map for the action of K on W . Define µ : W → k∗ by putting

µ(w)(α) = ω(w,α · w)− λ(α) for all w ∈W and α ∈ k.

This is a moment map by Examples 2.9 and 2.10. The statement of the general Kempf-Ness

theorem will now be identical to the statements of Proposition 5.2 and Theorem 5.3. The proof is

also exactly the same; we reproduce it just so that you will have the benefit of seeing the argument

formulated in slightly more abstract terms. (In particular, without choosing a basis for W .)

Theorem 5.4 (General Kempf-Ness). We have an inclusion µ−1(0) ⊂W ps, and for every polystable

element z ∈W , (G · z) ∩ µ−1(0) is a single K-orbit. Thus we obtain a homeomorphism6

W//K = µ−1(0)/K →W ps/G ∼= W//G.

Proof. The idea of the proof is identical to that of Theorem 5.3, so we’ll be a little bit sketchy. For

all z ∈W , define Ψz : k→ R by

Ψz(β) =
1

2
|| exp(iβ) · w||2 − 2λ(β).

By the same argument that we used above, Ψz is convex, and we need to show that Ψz(β) has a

critical point if and only if z is polystable. Again as above, Ψz has a minimum if and only if the

following two conditions hold:

6See Remark 4.12.
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(a) for every β ∈ kz, λ(β) = 0

(b) for every β ∈ kr kz, we have lim
t→∞

Ψz(tβ) =∞.

Once again we can rephrase condition (b) in the following manner:

(b′′) for every β ∈ kr kz, either lim
t→∞

etβ · z does not exist or λ(β) < 0.

The argument that conditions (a) and (b′′) are together equivalent to polystability of z is identical

to the argument in the abelian case.

Remark 5.5. Theorem 5.4 can be adapted to treat quotients of a projective space rather than

quotients of a vector space. The most general version deals with quotients of an arbitrary closed

subvariety of the product of a vector space and a projective space; that is, anything that can be

written as ProjR for a graded ring R. Two nice expositions of the projective case can be found in

lecture notes of Richard Thomas and Chris Woodward.

6 Cohomology

In this section we discuss the cohomology of a smooth toric variety. We begin with its Betti numbers

which, as we will see, have a beautiful combinatorial interpretation. We’ll then move on to the ring

structure, which will give us a good excuse to learn the basics of equivariant cohomology.

6.1 The h-polynomial of a simplicial complex

A simplicial complex is a collection ∆ of subsets of a fixed finite set S. The only axiom that this

collection is required to satisfy is that if I ∈ ∆ then any subset of I is also in ∆. Elements of ∆

are called faces. If ∆ is a simplicial complex, let fk(∆) be the number of faces of order k (that is,

the number of faces containing exactly k elements of I).

Given a polyhedron P with facets F1, . . . , Fn, let S = {1, . . . , n}, and let

∆(P ) :=

{
I
∣∣∣ ⋂
i∈I

Fi 6= ∅

}
.

Though this definition makes sense for any P , it is easiest to understand when P is simple. In

this case, faces of ∆(P ) of order k correspond bijectively to faces of P of codimension k via the

map F 7→ IF and its inverse I 7→
⋂
i∈I Fi. Thus fk(P ) := fk(∆(P )) is equal to the number of

codimension k faces of P .

Example 6.1. Do a few specific examples. Show how things are less nice in the non-simple case.

Let ∆ be a simplicial complex, and let d be the order of the largest face. We define the numbers

hk(∆), k = 0, . . . , d, and the corresponding h-polynomial, by the following equation:

d∑
k=0

hk(∆)qk := h∆(q) :=

d∑
k=0

fk(∆)qk(1− q)d−k.
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It is clear that each h-number is a linear combination of the f -numbers. We can also go the other

way: our formula implies that

d∑
k=0

fk(∆)pk =
d∑

k=0

hk(∆)pk(1 + p)d−k

(just plus in p = q
1−q ), therefore each f -number is a linear combination of the h-numbers, as

well. In other words, we have done nothing but repackage the same information in a slightly

different collection of numbers. This repackaging may look completely unmotivated at first, but it

is somewhat justified by the following construction.

Let

C[∆] := C[xi | i ∈ S]
/〈∏

i∈I
xi

∣∣∣ I /∈ ∆

〉
be the Stanley-Reisner ring of ∆. This ring is graded, with deg(xi) = 1 for all i.

Proposition 6.2. The ring C[∆] has Hilbert series h∆(q)
(1−q)d .

Proof. We have

h∆(q)

(1− q)d
=

d∑
i=0

fi(∆)

(
q

1− q

)i
=
∑
I∈∆

(
q

1− q

)|I|
.

It’s clear that the summand indexed by I is exactly the Hilbert series of the linear span of the

monomials in C[∆] with support I.

Example 6.3. Do a few specific examples.

It is a general problem in combinatorics to classify the h-polynomials that can arise from various

specific types of simplicial complexes. In the next section we will give a complete classification of

h-polynomials associated to simple polytopes.

6.2 The Poincaré polynomial of a toric variety

In this section we prove the following result, which relates the h-polynomial of a Delzant polytope

P to the topology of the toric variety X(P ). For any space X, let

PoinX(t) :=
dimX∑
k=0

dimHk(X;Q) tk

be the Poincaré polynomial of X.

Theorem 6.4 (Danilov). For any Delzant polytope P , PoinX(P )(t) = h∆(P )(t
2).

Example 6.5. Do some examples.
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Proof of Theorem 6.4. Choose an element a ∈ V ∗ that is non-constant on every edge of P , and for

each face F ⊂ P let vF ∈ F be the unique point at which a attains its minimum. For each vertex

v, let

Pv :=
⋃
vF =v

F̊ ⊂ P

and let Cv ⊂ X(P ) be the preimage of Pv. It is clear from the first construction that Cv is

homeomorphic to an ball of dimension 2dv := 2 dim(Pv), and it’s not hard to see that these

guys provide a cell decomposition of X(P ). Since all of the cells are even-dimensional, all of the

boundary maps are zero, so we can compute the Poincaré polynomial simply by counting cells of

various dimensions. That is, we have

PoinX(P )(t) =
∑
v

tdim(Cv) =
∑
v

t2dv .

The above reasoning is wrong; in fact, it’s not hard to see that these guys do not provide a

cell decomposition. (This issue is that the moment map often fails to be Palais-Smale, so the

closure of a 2-cell might intersect other 2-cells.) But it’s still true that the closures of the sets

{Cv} give a basis for homology.

For any v, Pv is made up of one vertex (namely v), dv edge interiors,
(
dv
2

)
2-face interiors, and

more generally
(
dv
k

)
k-face interiors. We therefore have

t2dv =
(
(t2 − 1) + 1

)dv =

dv∑
k=0

(
dv
k

)
(t2 − 1)k =

∑
vF =v

(t2 − 1)dimF .

Putting it all together, we have

PoinX(P )(t) =
∑
v

t2dv =
∑
v

∑
vF =v

(t2 − 1)dimF =
∑
F

(t2 − 1)dimF =
d∑

k=0

fk(∆(P ))(t2 − 1)d−k.

Since X(P ) is smooth, compact, and oriented, it satisfies Poincaré duality, which means that

PoinX(P )(t) = t2d PoinX(P )(t
−1). This means that we have

PoinX(P )(t) = t2d
d∑

k=0

fk(∆(P ))(t−2 − 1)d−k =

d∑
k=0

fk(∆(P ))t2k(1− t2)d−k = h∆(P )(t
2).

This completes the proof.

Next, we use Theorem 6.4 to prove the exact same statement for (unbounded) polyhedra.

Theorem 6.6. For any Delzant polyhedron P , PoinX(P )(t) = h∆(P )(t
2).

Example 6.7. Do some non-compact examples.
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Proof of Theorem 6.6. Let P̄ be a polytope attained from P by intersecting with a single half-space

that contains all of the vertices of P , and let ∂P̄ be the intersection of P with the boundary of the

half space. Let X = X(P ), X̄ = X(P̄ ), and ∂X = X(∂P̄ ). We then have X̄ r ∂X̄ ∼= X.

Consider the long exact sequence in cohomology associated to the pair (X̄, ∂X̄). We have

H∗(X̄, ∂X̄) ∼= H∗c (X), so this sequence takes the form

0 = H2j−1(∂X̄)→ H2j
c (X)→ H2j(X̄)→ H2j(∂X̄)→ H2j+1

c (X)→ H2j+1(X̄) = 0. (3)

Since ∂X̄ is a CW-subcomplex of X̄ with all cells of even dimension, the map H2j(X̄)→ H2j(∂X̄)

is surjective. This leaves us with H2j
c (X) ∼= ker

(
H2j(X̄)→ H2j(∂X̄)

)
and H2j+1

c (X) = 0 for all j.

We now use Poincaré duality for the noncompact manifold X to conclude that Hk(X) is dual to

H2d−k
c (X), and therefore

PoinX(t) = t2d
2d∑
k=0

dimHk
c (X)t−k = t2d PoinX̄(t−1)− t2d Poin∂X̄(t−1) = PoinX̄(t)− t2 Poin∂X̄(t).

By Theorem 6.4, we have PoinX̄(t) = h∆(P̄ )(t
2) and Poin∂X̄(t) = h∆(∂P̄ )(t

2). Putting it all together,

we have

PoinX(t) = PoinX̄(t)− t2 Poin∂X̄(t)

=
∑
F⊂P̄

t2(d−dimF )(1− t2)dimF − t2
∑
F⊂∂P̄

t2(d−1−dimF )(1− t2)dimF

=
∑
F⊂P̄

t2(d−dimF )(1− t2)dimF −
∑
F⊂∂P̄

t2(d−dimF )(1− t2)dimF

=
∑
F⊂P

t2(d−dimF )(1− t2)dimF

= h∆(P )(t
2).

This completes the proof.

Remark 6.8. Our proofs of Theorems 6.4 and 6.6 use the definition of the h-polynomial, which

is a little bit lame. Proposition 6.2 provides a more natural way to think about the h-polynomial,

and it would be nice to prove Theorems 6.4 and 6.6 from this perspective. Indeed, we will do this

in Section 6.5 (see in particular Remark 6.22) using equivariant cohomology.

Theorem 6.4 has some very nice numerical consequences. A sequence g0, g1, . . . , gm is called

an M-sequence if there exists a commutative, graded ring R, generated in degree 1, such that

gk = dimRk.

Theorem 6.9 (Stanley). Let P be a Delzant polytope, and let hk = hk(∆(P )). Then

• hk = hd−k for all k

• h0, h1 − h0, h2 − h1, . . . , hb d
2
c − hb d

2
c−1 is an M-sequence.
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Proof. The first collection of equalities comes from Theorem 6.4 and Poincaré duality. The second

comes from the Lefschetz hyperplane theorem, which says that for all k ≤ bd2c, the map from

H2k−2(X(P )) to H2k(X(P )) given by multiplication by the Euler class e := e(OX(1)) is injective.

Thus hk−hk−1 is the dimension of the degree 2k piece of the ring H∗(X(P ))/〈e〉. Thus, to conclude

that we have an M-sequence, we only need to show that H∗(X(P )) is generated in degree 2. Indeed,

it’s easy to see that the classes {[X(F )] | F ⊂ P a facet} generate H∗(X(P )) multiplicatively (more

on this in the next section), so we’re done.

Remark 6.10. In fact, Theorems 6.4 and 6.9 can be extended from Delzant polytopes (smooth

compact toric varieties) to simple polytopes (compact toric orbifolds). The ideas of the proofs are

the same, though the details are somewhat more technical.

Remark 6.11. Theorem 6.9 was originally conjectured by McMullen and proven by Stanley (whose

main contribution was to interpret Danilov’s work in the appropriate combinatorial language). In

fact, McMullen had conjectured the converse of Theorem 6.9, as well; that is, he conjectured that

any h0, . . . , hd with those two properties are the h-numbers of some simple polytope. This result

was proven by Billera and Lee a year or two after Stanley’s proof of Theorem 6.9.

6.3 Cohomology basics

In this section we review a few properties of cohomology that everyone should know. Let X be an

oriented manifold. Every (not necessarily compact) closed submanifold Y ⊂ X of codimension k

defines a class [Y ] ∈ Hk(X). You should think of this class as the class that takes a closed k-cycle

to the intersection of that k-cycle with Y (though of course this only works when the k-cycle is

transverse to Y ). Formally, it is the pushforward to X of the class 1 ∈ H∗(Y ). Here are some

properties that this construction has.

(a) If Y1 and Y2 intersect transversely, then [Y1] · [Y2] = [Y1 ∩ Y2].

(b) If X is a finite CW-complex and the closures of the cells are all submanifolds, then these

submanifolds additively generate H∗(X).

(c) If f : Z → X is transverse to Y ⊂ X, then f∗[Y ] = [f−1Y ] ∈ H∗(Z).

Let’s think about the implications of these properties for toric varieties.

Proposition 6.12. For any Delzant polyhedron P , the classes {[X(F )] | F ⊂ P a face} additively

generate H∗(X(P )). For any two faces F and F ′ that intersect transversely in P ,

[X(F )] · [X(F ′)] = [X(F ∩ F ′)].

In particular, the classes {[X(F )] | F ⊂ P a facet} multiplicatively generate H∗(X(P )).

Proof. If P is a polytope, then the additive generation follows from property (b), and the rest

follows from property (a). If P is an unbounded polyhedron, then property (b) no longer applies.
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However, if we can prove additive generation by some other means, then the rest of the proposition

will again follow from property (a).

We actually don’t have a CW-complex, but the argument goes through anyway; see the proof

of Theorem 6.4.

Consider the polytopes P̄ and ∂P̄ that we introduced in the proof of Theorem 6.6. As before,

we let X = X(P ), X̄ = X(P̄ ), and ∂X̄ = X(∂P̄ ), and we observe that X̄ r ∂X̄ is diffeomorphic to

X. Property (c) implies that the face classes in H∗(X̄) restrict to the face classes in H∗(X), thus

it is sufficient to prove that the restriction map from H∗(X̄) to H∗(X) is surjective. By Poincaré

duality, this is equivalent to the statement that H∗c (X) includes into H∗(X̄), and we saw this from

the exact sequence (3).

Remark 6.13. Proposition 6.12 holds for simplicial polyhedra, as well, provided that we work

with rational coefficients. Once again the proof is more technical because it involves working with

orbifolds, but the ideas are the same.

6.4 Equivariant cohomology basics

Let K be a topological group acting on a space X. Let EK be a contractible space on which K

acts freely, and let XK := (X × EK)/K. The space XG is often called the Borel space or the

homotopy quotient of X by K. If K acts freely on X, then XK is homotopy equivalent to X/K.

At the other extreme, if K acts trivially on X, then XK
∼= X × BK, where BK = EK/K is the

homotopy quotient of a point. More generally, XK is a fiber bundle over BK with fiber X, and

the nontriviality of the fiber bundle exactly encodes the nontriviality of the action of K on X.

Definition 6.14. We define the equivariant cohomology ring H∗K(X) := H∗(XK).

Remark 6.15. If G is a reductive algebraic group and K is its maximal compact subgroup, then

EG is a contractible space on which K ⊂ G acts trivially, and any XK is a G/K-bundle over XG.

Since G/K is contractible (think about the case of a torus), H∗K(X) is canonically isomorphic to

H∗G(X). So the moral is that equivariant cohomology doesn’t care whether we work with a compact

group or with its complexification.

The most important case is when X is a single point and XK = BK. For example, if K = U(1),

we can take EG = S2∞+1 with the Hopf action, so BK = P∞. We then have H∗K(pt) = Z[u], where

u ∈ H2
K(pt) is the Euler class of the line bundle OP∞(1) = (EK ×C)/C×. If K = Tn, then BK =

(P∞)n, and H∗K(pt) = Z[u1, . . . , un]. More invariantly, we claim that if T is a torus, then H∗T (pt) is

canonically isomorphic to Sym t∗Z. The map in degree 2 is given by taking a ∈ t∗Z
∼= Hom(T,U(1))

to the Euler class of the line bundle (ET ×Ca)/T . This is clearly a group homomorphism, and one

can see that it is an isomorphism by reducing to the case of a 1-dimensional torus, which we have

already done.

The reason why this is the most important case is that for any K-space X, XK maps to

BK, and therefore H∗K(X) = H∗(XK) is an algebra over H∗K(pt) = H∗(BK). More generally,
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any K-equivariant map f : X → Y induces a map XK → YK , and therefore a homomorphism

f∗ : H∗K(Y ) → H∗K(X). Since every K-space admits a unique equivariant map to a point, f∗ is

compatible with the algebra structure. In other words, H∗K(−) is a contravariant functor from

K-spaces to H∗K(pt)-algebras. This is true even when K is the trivial group, but it’s a much more

interesting statement in the equivariant setting, since H∗K(pt) can be nonzero in arbitrarily high

degree.

If Y ⊂ X is a K-equivariant closed submanifold of codimension k, then YK ⊂ XK has codimen-

sion k, so we can define

[Y ]K := [YK ] ∈ H∗(XK) = Hk
K(X).

Just as in the non-equivariant case, we have [Y1]K · [Y2]K = [Y1∩Y2]K if they intersect transversely,

and f∗[Y ]K = [f−1Y ]K if f : Z → X is a K-equivariant map that’s transverse to Y . The inclusion

of X into XK (as a fiber of the projection to BK) induces a forgetful map H∗K(X) → H∗(X),

and it is clear that the class [Y ]K maps to the class [Y ].

Remark 6.16. An important special case of this construction is when K = T is a torus and

X = Ca is the one-dimensional representation of T defined by a ∈ t∗Z
∼= Hom(T,U(1)). Then the

isomorphism

H2
T (Ca) ∼= H2

T (pt) ∼= t∗

takes the class [0]T to a. This follows from the fact that the Euler class of a vector bundle is (by

definition) equal to the class in the total space represented by the zero section.

Let K be a connected group, so that BK is simply-connected. (In general, the fundamental

group of BK is isomorphic to the quotient of K by the connected component containing the

identity.) Since XK is a fiber bundle over BK with fiber X, there is a spectral sequence with

E2 page H∗(BK) ⊗ H∗(X). We say that X is equivariantly formal if this spectral sequence

collapses. This is equivalent to saying that H∗K(X) ∼= H∗K(pt) ⊗H∗(X) as a module over H∗K(pt)

(non-canonically, and not as a ring!), and that the forgetful map to H∗(X) is the surjection given

by setting all positive-degree elements of H∗K(pt) equal to zero.

Example 6.17. Let K = U(1) acting on X = P1. In this case we know in advance that the

spectral sequence will collapse, because both H∗(X) and H∗K(pt) exist entirely in even degree!

Let’s compute the equivariant cohomology ring explicitly.

Let n, s ∈ P1 be the two fixed points (the north and south poles). Then we get a map

Z[x, y]/〈xy〉 → H∗U(1)(P
1) sending x to [n]U(1) and y to [s]U(1). We will show that this map is

in fact an isomorphism.

To prove injectivity, we need to show that for all positive k, the kth powers of [n]U(1) and [s]U(1)

are nonzero in H∗U(1)(P
1). Consider the restriction map

H∗U(1)(P
1)→ H∗U(1)(P

1 r s) ∼= H∗U(1)(C1).

The open inclusion is transverse to n, so this restriction map takes [n]U(1) to [0]U(1), which is the
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generator of H∗U(1)(C1) by Remark 6.16. Thus [n]kU(1) must be nonzero for all k. The argument for

[s]U(1) is identical.

To prove surjectivity, it is enough to show that the subring generated by [n]U(1) and [s]U(1)

surjects onto H∗(P1) and contains the image of H∗U(1)(pt). The first statement is clear, since both

[n]U(1) and [s]U(1) map to the class of a point. Since [n]U(1) − [s]U(1) lies in the kernel of this

projection, it must be a multiple of the generator u ∈ H2
U(1)(pt). Again, consider the restriction

map

H∗U(1)(P
1)→ H∗U(1)(P

1 r s) ∼= H∗U(1)(C1) ∼= H∗U(1)(pt).

The class [n]U(1) − [s]U(1) maps to the generator of H2
U(1)(pt), therefore it must be equal to u.

So now we have seen that H∗U(1)(P
1) is isomorphic to Z[x, y]/〈xy〉, and that the algebra structure

over H∗U(1)(pt)
∼= Z[u] is given by u 7→ x− y. As a module over Z[u], it is a free module generated

by 1 and x, and therefore isomorphic to Z[u]⊗H∗(P1). But it is also a free module generated by

1 and y, or by 1 and 5x − 6y, and so on. In other words, it is isomorphic to Z[u] ⊗ H∗(P1), but

not in a canonical way. Furthermore, it is not isomorphic as a ring; indeed, Z[u] ⊗ H∗(P1) has a

nonzero class in degree 2 whose square is trivial, but Z[x, y]/〈xy〉 does not.

We end with the following result, which will be crucial in the next section. Consider a normal

subgroup N ⊂ K with quotient Q = K/N . We may take EQ × EK as our contractible space on

which K acts freely, and we have a map (EQ×EK)/K → EQ/K = EQ/Q, which induces a map

from H∗Q(pt) to H∗K(pt). If K is a torus, then this is nothing other than the natural inclusion from

Sym q∗Z to Sym k∗Z.

Lemma 6.18. Suppose that X is a K-space and that N ⊂ K acts freely. Then H∗K(X) ∼= H∗Q(X/N)

as H∗Q(pt)-algebras.

Proof. We have

XK = (EK ×X)/K ∼=
(

(EK ×X)/N
)/

Q,

thus

H∗K(X) = H∗(XK) ∼= H∗
((

(EK ×X)/N
)/

Q
)
∼= H∗Q

(
(EK ×X)/N

)
∼= H∗Q(X/N),

where the last isomorphism comes from the fact that (EK×X)/N is a vector bundle over X/N .

6.5 Equivariant cohomology of toric varieties

In this section we will compute H∗T (X(P )) as an algebra over Sym t∗Z
∼= H∗T (pt), where P is a

Delzant polyhedron and T is the torus acting on the toric variety X(P ). We will find that the ideas

that we need for this computation are no more sophisticated than those that we used in Example

6.17, which was the simplest nontrivial case.
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Theorem 6.19. Consider the map Z[u1, . . . , un]→ H∗T (X(P )) taking ui to [X(Fi)]T . This map is

surjective with kernel

I :=
〈∏
i∈S

ui

∣∣∣ ⋂
i∈S

Fi = ∅
〉
.

Furthermore, the Sym t∗Z-algebra structure is given by the natural inclusion

Sym t∗Z ⊂ Sym(tn)∗Z
∼= Z[u1, . . . , un].

Proof. Let’s start with the last statement. That is, we will show that if we give Z[u1, . . . , un] the

structure of a Sym t∗Z-algebra in the indicated way, then the map from Z[u1, . . . , un] to H∗T (X(P ))

taking ui to [X(Fi)]T is an algebra homomorphism. To see this, note that the map can be interpreted

geometrically as follows:

Z[u1, . . . , un] ∼= Sym(tn)∗Z
∼= H∗Tn(pt) ∼= H∗Tn(Cn)→ H∗Tn(µ−1(0)) ∼= H∗Tn/K(µ−1(0)/K) = H∗T (X2(P )).

The fact that this is our map follows from the observation that if Zi = {z ∈ Cn | zi = 0}, then ui

is identified with [Zi]Tn ∈ H∗Tn(Cn), and
(
Zi ∩ µ−1(0)

)
/K = X(Fi). The fact that this map is an

algebra homomorphism is a consequence of Lemma 6.18.

Just as in Example 6.17, we know that X(P ) is equivariantly formal for degree reasons. Thus

to prove surjectivity, it is enough to show that the composition Z[u1, . . . , un] → H∗T (X(P )) →
H∗(X(P )) is surjective. This follows from Proposition 6.12.

It is clear that I is contained in the kernel. To prove that I is equal to the kernel, consider a

polynomial f ∈ Z[u1, . . . , un] that is not contained in I. This means that at least one monomial in

f is supported on a face of ∆(P ). For notational convenience, let’s assume that some monomial

is supported on {1, . . . , d} and that F1 ∩ . . . ∩ Fd is a vertex of P , and let x be the corresponding

element of X(P )T . We will show that the composition

Z[u1, . . . , un]→ H∗T (X(P ))→ H∗T (x)

has kernel 〈ud+1, . . . , un〉. Since f is not contained in this ideal, it does not map to zero in H∗T (x),

and therefore cannot map to zero in H∗T (X(P )).

It is easy to see that ui is in the kernel of the composition when i > d, since X(Fi) does not

contain x. To see that these is nothing else in the kernel, it is enough to see that the composition

is surjective; this follows from the fact that it is a homomorphism of H∗T (pt)-algebras.

Corollary 6.20. We have a natural isomorphism

H∗(X(P )) ∼= Z[u1, . . . , un]
/
I + J,

where

I =
〈∏
i∈S

ui

∣∣∣ ⋂
i∈S

Fi = ∅
〉
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and J is the ideal generated by t∗Z ⊂ (tn)∗Z
∼= Z{u1, . . . , un}.

Example 6.21. Do a planar polytope with 5 facets.

Remark 6.22. Another corollary of Theorem 6.19 is a new and more elegant proof of Theorems

6.4 and 6.6. Theorem 6.19 says that H∗T (X(P )) is isomorphic to the Stanley-Reisner ring of ∆(P )

with degrees doubled. We know from Proposition 6.2 that this ring has Hilbert series

h∆(P )(t
2)

(1− t2)2d
.

On the other hand, since H∗T (X(P )) ∼= H∗(X(P ))⊗Sym t∗Z as a graded vector space, it has Hilbert

series PoinX(P )(t) · (1− t2)−d. Hence we must have h∆(P ) = PoinX(P )(t).

6.6 What’s true more generally?

There were three important ideas that we used to proof Theorem 6.19. The first was that X(P )

is equivariantly formal for the action of T . The second was that the natural map from the Tn-

equivariant cohomology of Cn to the T -equivariant cohomology of X(P ) is surjective. The third

was that nonzero classes in the T -equivariant cohomology of X(P ) can be detected by restricting

to fixed points of the T -action. In this section I will state (without proof) the most general versions

of each of these statements that I know to be true. Let’s start with equivariant formality.

Theorem 6.23 (Atiyah-Bott). Let K be a compact connected group acting on a compact symplectic

manifold X with a moment map. Then X is equivariantly formal with rational coefficients.

Remark 6.24. Note that this also applies to reductive groups acting linearly on smooth projective

varieties, since such varieties are all symplectic and the action of the maximal compact subgroup

is always hamiltonian.

Note that Theorem 6.23 is not actually sufficient to get equivariant formality for the action of

T on X(P ). One problem is that X(P ) need not be compact, and the other is that we wanted

formality over Z, not just over Q. For this we used the following, much easier theorem.

Theorem 6.25. Let K be a connected group acting on a topological space X with no cohomology

in odd degree. Then X is equivariantly formal with integer coefficients.

Proof. For degree reasons, the spectral sequence has no nontrivial maps!

Next we move on to surjectivity. Let K be a compact group acting on a symplectic manifold

X with moment map Φ : X → k∗. Let N ⊂ K be a normal subgroup and let Q = K/N be the

quotient. Let µ = i∗ ◦ Φ : X → n∗ be the moment map for the action of N .

Theorem 6.26 (Kirwan). If Φ is proper and N acts freely on µ−1(0), then the restriction map

H∗K(X)→ H∗K(µ−1(0)) ∼= H∗Q(X//N)

is surjective.
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Remark 6.27. Once again, the Kempf-Ness theorem can be used to infer a similar result about

linear actions of reductive algebraic groups on smooth projective varieties. Such a result was also

proven in a purely algebraic setting by Ellingsrud and Strømme.

Finally, let’s continue to localization. I’m not sure to whom this should be attributed, but

certainly some form of it goes back to Borel.

Theorem 6.28. If K is a compact connected group and X is an equivariantly formal K-space,

then the restriction map H∗K(X)→ H∗K(XK) is injective.

Remark 6.29. When K is a torus, Chang and Skjelbred gave a beautiful characterization of

the image of this map; this characterization was later “popularized” by Goresky, Kottwitz, and

MacPherson. There is a class of spaces known as GKM spaces for which XK is finite and the

image of H∗K(X) in H∗K(XK) ∼=
⊕

x∈XT Sym k∗Z is particularly easy to describe. In the case of toric

varieties, we have

H∗T (X(P )) ∼=
⊕

x∈X(P )T

SymVZ =
⊕
v∈P

a vertex

SymVZ,

and the Chang-Skjelbred-Goresky-Kottwitz-MacPherson condition says that (fv) lies in the image

if and only if, whenever v and v′ are connected by an edge, v − v′ ∈ V divides fv − fv′ ∈ SymV .
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