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Abstract: We classify the compact, connected multiplicity free
Hamiltonian U(2)-manifolds with trivial principal isotropy group
whose momentum polytope is a triangle.
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1. Introduction

A fundamental invariant of a compact and connected Hamiltonian K-mani-
fold M , where K is a compact connected Lie group, is its momentum polytope
P(M). In [Kno11], F. Knop showed that if M is multiplicity free (see Def-
inition 2.6 below) then P(M) together with the principal isotropy group of
the K-action uniquely determines M . This assertion had been conjectured by
Th. Delzant in the 1990s. Knop also gave necessary and sufficient conditions
for a polytope to be the momentum polytope of such a multiplicity free mani-
fold M . These conditions involve a representation theoretic object, called the
weight monoid, associated to smooth affine spherical varieties, which consti-
tute a certain class of complex algebraic varieties equipped with an action of
a complex reductive group.

In this paper, we apply Knop’s classification result in the case where K =
U(2) and determine the compact and connected multiplicity free Hamiltonian
U(2)-manifolds whose momentum polytope is a triangle and whose principal
istotropy group is trivial. The result is summarized in Table 2. In contrast to
Knop’s work, which yields local descriptions of the multiplicity free manifold
“above” open subsets of the momentum polytope, we have found explicit,
global descriptions of the U(2)-manifolds under consideration. Our hope is
that they constitute useful “experimental data” to study the following natural
question: Which geometric information about a multiplicity free manifold M
can “directly” be read off its momentum polytope P(M)?
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In Section 2, we review basic facts about Hamiltonian actions and recall,
in Theorem 2.3, a special case of a local description, given by R. Sjamaar
in [Sja98], of the momentum polytope of a Hamiltonian manifold. We also
provide the necessary background to be able to state, in Theorem 2.9, a spe-
cial case of Knop’s aforementioned classification theorem, which is adapted
to our setting. Example 2.1 establishes notation we will use in Sections 3
to 5. The first purpose of Section 3 is to further specialize Knop’s Theo-
rem 2.9 to the case K = U(2): the classification of smooth affine spherical
(SL(2,C) × C×)-varieties from [PPVS18] yields Proposition 3.3, which gives
an elementary and explicit characterization of the momentum polytopes of
compact and connected multiplictity free U(2)-manifolds with trivial princi-
pal isotropy group. A first application is Proposition 3.7, which extends the
applicability of the Kählerizability criterion [Woo98b, Theorem 8.8] due to
C. Woodward. We also extend [Woo98b, Theorem 9.1] and show in Proposi-
tion 3.17, using the extension criterion of S. Tolman’s [Tol98], that a multi-
plicity free U(2)-manifold with trivial principal isotropy group carries a U(2)-
invariant compatible complex structure if and only if it carries a T -invariant
compatible complex structure, where T is a maximal torus of U(2). We then
apply Proposition 3.3 to find in Proposition 4.2 the list of all triangles which
occur as momentum polytopes of multiplicity free U(2)-manifolds with triv-
ial principal isotropy group. The rest of Section 4 is devoted to the proof of
Theorem 4.3: for each such triangle we explicitly and globally describe the
corresponding compact and connected multiplicity free U(2)-manifold. Fi-
nally, in Theorem 5.3 of Section 5, we show that exactly four nonequivariant
diffeomorphism types occur among these manifolds.

We have tried to keep the exposition explicit and elementary in order to
make our results and the employed techniques, which come from different ar-
eas of mathematics, accessible to as many readers as possible. The techniques
can directly be applied to the other compact Lie groups of rank 2 and should
yield analogous classifications and results.

Notation

We use the convention that 0 ∈ N. From Section 3 onward, T will be the
maximal torus of U(2) consisting of diagonal matrices and TC the subgroup
of diagonal matrices in GL(2) := GL(2,C). We will use the notation from
Example 2.1 throughout the paper.

Unless otherwise stated, K will denote a compact connected Lie group
and G = KC its complexification, which is a complex connected reductive
linear algebraic group.
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Multiplicity free U(2)-actions and triangles 1777

2. Background

Multiplicity free manifolds

In this section, we review basic facts about Hamiltonian actions on symplectic
manifolds, mostly following [Sja98], and then state results of Sjamaar (Theo-
rem 2.3) and of Knop (Theorem 2.9) that will be essential in the proof of our
main result.

We begin with some basic notions and facts from the theory of compact
Lie groups. Let T be a maximal torus in the compact, connected Lie group K.
We will use k and t for the Lie algebras of K and T , respectively. Furthermore
k∗ and t∗ are the dual vector spaces, and we equip k∗ with the coadjoint action
of K. We can and will view t∗ as a subspace of k∗ using the identification

t∗ ∼= (k∗)T ⊂ k∗

with the subspace of T -fixed vectors in k∗. We denote the weight lattice of K
by Λ, that is

Λ = HomZ(ker(exp |t),Z) ⊂ t∗,

where exp : k → K is the exponential map. Note that

Λ → Hom(T,U(1)), ν �→ [exp(ξ) �→ exp(2π
√
−1〈ν, ξ〉)]

is a bijection between Λ and the character group of T , with inverse map

Hom(T,U(1)) → Λ, λ �→ 1
2π

√
−1

λ∗,

where λ∗ is the derivative of λ at the identity. We will use this bijection to
identify Λ with Hom(T,U(1)). In particular, if V is a complex representation
of K and v ∈ V is a weight vector of weight λ ∈ Λ, then we have (with abuse
of notation)

ξ · v = 2π
√
−1λ(ξ)v for all ξ ∈ t, and

t · v = λ(t)v for all t ∈ T.

The complexification G := KC of K is a complex connected reductive
group. Moreover, K is a maximal compact subgroup and the complexification
TC of T is a maximal (algebraic) torus of G. Recall that the weight lattice
Hom(TC,C×) of G can be identified with Λ using the restriction map

Homalg.gp.(TC,C×) → HomLie gp.(T, U(1)), λ �→ λ|T .
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Fix a maximal unipotent subgroup N of G which is normalized by TC and
let t+ be the (closed) Weyl chamber in t∗ which is positive with respect to N .
It is a fundamental domain for the coadjoint action of K on k∗ and for the
natural action of the Weyl group

W := N(T )/T

of K on t∗. Then
Λ+ := Λ ∩ t+

is the monoid of dominant weights. Highest weight theory tells us that the
assignment

V �→ the weight of the T -action on V N

is a bijection between the set of isomorphism classes of irreducible finite-
dimensional complex representations of K and Λ+. When λ ∈ Λ+, we will
write V (λ) for the (up to isomorphism) unique irreducible finite-dimensional
complex representation of K with highest weight λ. Furthermore, K and G
have the same finite-dimensional complex representations: if dimC V < ∞ and
ρ : K → GL(V ) is a homomorphism of Lie groups then there exists a unique
homomorphism ρ : G → GL(V ) of algebraic groups such that ρ|K = ρ.

Example 2.1. To illustrate the objects we just recalled and to fix notation
that we will use in what follows, we explicitly describe the objects in the case
where K is the unitary group U(2) of rank 2. We choose the maximal torus

T =
{(

t1 0
0 t2

)
: t1, t2 ∈ C, |t1| = |t2| = 1

}
⊂ U(2).

The complexification of U(2) is GL(2) := GL(2,C) and that of T is

TC =
{(

t1 0
0 t2

)
: t1, t2 ∈ C×

}
⊂ GL(2).

We will write ε1, ε2 for the basis of t∗ dual to the basis

ξ1 :=
(

2π
√
−1 0

0 0

)
, ξ2 :=

(
0 0
0 2π

√
−1

)

of t. Then the weight lattice is

Λ = spanZ{ε1, ε2}
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and viewed as elements of Hom(T,U(1)) or of Hom(TC,C×) the characters
ε1, ε2 are defined by

(2.1) εi

(
t1 0
0 t2

)
= ti for i ∈ {1, 2}.

For N we choose the subgroup{(
1 a
0 1

)
: a ∈ C

}

of GL(2). The corresponding Weyl chamber is then

t+ = {λ ∈ t∗ : 〈α∨, λ〉 ≥ 0},

where

(2.2) α∨ := ξ1 − ξ2

is the coroot of the simple root

(2.3) α := ε1 − ε2 ∈ Λ ⊂ t∗

of U(2) (and of GL(2)).
The Weyl group W of U(2) (and of GL(2)) is isomorphic to the symmetric

group S2 and the nontrivial element sα ∈ W acts on t∗ by the reflection

sα(λ) = λ− 〈α∨, λ〉α, where λ ∈ t∗.

The monoid of dominant weights is

Λ+ = spanN{ω1, ω2,−ω2}, where ω1 := ε1 and ω2 := ε1 + ε2.

Observe that ω1 is the highest weight of the standard representation of U(2)
(or of GL(2)), which we will usually simply denote by C2. We will also use the
notation Cdetk for the one-dimensional representation V (kω2), where k ∈ Z:

A · z = det(A)kz for all z ∈ Cdetk and all A in U(2) or in GL(2).

A Hamiltonian K-manifold is a triple (M,ω, μ), where (M,ω) is sym-
plectic manifold equipped with a smooth K-action K × M → M and a
momentum map μ, which means, by definition, a smooth map μ : M → k∗
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that is K-equivariant with respect to the coadjoint action of K on k∗ and
satisfies

dμξ = ι(ξM )ω for all ξ ∈ k.

Here ξM is the vector field on M defined by

ξM (x) = d

dt

∣∣∣∣
t=0

exp(tξ) · x ∈ TxM , where x ∈ M,

and μξ : M → R is the function with μξ(m) = μ(m)(ξ). Since we have
identified the Weyl chamber t+ with a subset of k∗ we can define

(2.4) P(M) := μ(M) ∩ t+.

In [Kir84, Theorem 2.1], F. Kirwan proved that P(M) is the convex hull of
finitely many points when M is compact and connected. In that case, we call
P(M) the momentum polytope of M .

Example 2.2 describes an important source of Hamiltonian K-manifolds:
projective spaces P(V ) associated to unitary representations V of K.

Example 2.2. Let V be a finite-dimensional unitary representation of K with
K-invariant Hermitian inner product 〈·, ·〉, where we adopt the convention
that 〈·, ·〉 is complex-linear in the first entry. Following [Sja98, Ex. 2.1 and
2.2], we describe well-known structures of Hamiltonian K-manifolds on V and
on the associated projective space P(V ), which is the space of complex lines
in V . The map

(2.5) μV : V → k∗, μV (v)(ξ) =
√
−1
2 〈ξv, v〉,

where ξ ∈ k, is a momentum map for the K-invariant symplectic form
ωV (·, ·) = − Im〈·, ·〉 on V . The Fubini-Study symplectic form ωP(V ) on P(V )
corresponding to 〈·, ·〉 is invariant under the natural K-action on P(V ) and
we equip P(V ) with the momentum map

(2.6) μP(V ) : P(V ) → k∗, μP(V )([v])(ξ) =
√
−1
2π

〈ξv, v〉
‖v‖2 ,

where ξ ∈ k and [v] is the complex line through v ∈ V \ {0}.
If K is a torus and v ∈ V is a weight vector with weight λ, then μV (v) =

−π‖v‖2v and μP(V )([v]) = −λ ∈ k∗. This implies that

(2.7) μV (V ) = − cone{λ1, λ2, . . . , λr}
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and that the momentum polytope of (P(V ), μP(V )) is

(2.8) P(P(V )) = μP(V )(P(V )) = − conv(λ1, λ2, . . . , λr),

where λ1, λ2, . . . , λr are the weights of K in V .

The following Theorem, which is due to Sjamaar and which was extracted
from [Sja98] will be useful in Section 4. In order to state it, we recall that the
symplectic slice of a Hamiltonian K-manifold M in m ∈ M is the symplectic
vector space

(2.9) Nm := Tm(K ·m)⊥/(Tm(K ·m) ∩ Tm(K ·m)⊥),

where Tm(K ·m)⊥ is the symplectic annihilator of Tm(K ·m) in TmM . The
isotropy action of Km on TmM induces a natural symplectic representation
of Km on Nm.

Theorem 2.3 ([Sja98]). Let (M,μ) be a compact connected Hamiltonian K-
manifold. Suppose m ∈ M such that μ(m) lies in the interior of t+.

(a) If μ(m) is a vertex of P(M), then Km = T .
(b) Suppose Km = T . Then

(2.10) Nm = Tm(K ·m)⊥ ∼= TmM/Tm(K ·m)

as T -modules, where Nm is the symplectic slice of M in m. Moreover,
the cone with vertex μ(m) spanned by P(M) is equal to μ(m)−cone Πm,
where Πm is the set of weights of the symplectic T -representation Nm.

Proof. Assertion (a) is contained in part 2. of [Sja98, Theorem 6.7]. Assertion
(b) follows from part 1. of loc.cit. and from (2.7) above; see also the paragraph
in [Sja98] containing Equation (6.9). To apply (2.7) to the symplectic T -
representation Nm we recall that any symplectic T -representation (V, ωV )
can be made into a unitary representation by choosing a T -invariant complex
structure on V that is compatible with the symplectic form ωV and that the
weights of the representation are independent of this choice.

Remark 2.4. In both parts of this remark, the point m ∈ M is as in part
(b) of Theorem 2.3.

(a) The cone with vertex μ(m) spanned by P(M) is not pointed when μ(m)
is not a vertex of P(M) (we recall that a cone is called pointed when it
does not contain any line).
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(b) Later in this paper we will use the fact that there exists a K-invariant
diffeomorphism ϕ from the homogeneous fiber bundle K ×T Nm onto
a K-invariant neighborhood of K · m in M such that ϕ([e, 0]) = m
(we recall the construction of K ×T Nm below in Proposition 2.11).
This is an application of the slice theorem (see, e.g., [Kaw91, Theorem
4.10]). Actually, the proof of Theorem 2.3(b) uses the symplectic slice
theorem of Marle [Mar88] and Guillemin-Sternberg [GS90] (see, e.g.,
[Sja98, Theorem 6.3] for a statement of this theorem).

We will also make use of the following well-known fact. For a proof, see,
e.g., [GS05, Theorems 1.2.1 and 1.2.2].

Proposition 2.5. Let (M,ω, μ) be a compact connected Hamiltonian K-
manifold with momentum polytope P(M) and let r : k∗ → t∗ be the dual
map to the inclusion t → k. Then (M,ω, r ◦ μ) is a Hamiltonian T -manifold
whose momentum polytope PT (M) := r(μ(M)) satisfies the equality

(2.11) PT (M) = conv
( ⋃

w∈W
w · P(M)

)
.

Definition 2.6. A multiplicity free K-manifold is a compact and con-
nected Hamiltonian K-manifold M such that

(2.12) μ−1(a)/Ka is a point for every a ∈ μ(M).

Remark 2.7. (a) We have included connectedness and compactness in the
definition of a multiplicity free K-manifold to avoid having to frequently
repeat the associated adjectives in this paper. The (more general) notion
of multiplicity free Hamiltonian manifold was introduced in [MF78] and
[GS84] as a Hamiltonian K-manifold M of which the Poisson algebra
of K-invariant smooth functions M → R is an abelian Lie algebra.
Equivalent conditions on M are given in [HW90, Theorem 3]. As shown
in [Woo96, Proposition A.1], for a compact, connected Hamiltonian K-
manifold M this original definition is equivalent to condition (2.12).

(b) Let (M,ω, μ) be a compact connected Hamiltonian K-manifold. As ob-
served in [Kno11], just after Definition 2.1, M is multiplicity free if and
only if

M/K → P(M) : K ·m �→ μ(K ·m) ∩ t+

is a homeomorphism. Furthermore, if the principal isotropy group of
the K-action on M is discrete, then M is multiplicity free if and only if

(2.13) dim(M) = dim(K) + rk(K),

For the author's personal use only.

For the author's personal use only.



Multiplicity free U(2)-actions and triangles 1783

see [Woo96, Proposition A.1].

In order to state Knop’s classification theorem for multiplicity free mani-
folds we introduce some additional notation and recall some more well-known
facts. A smooth affine complex G-variety X is called spherical if its ring of
regular functions C[X] is multiplicity free as a G-module, that is

dim HomG(V (λ),C[X]) ≤ 1 for all λ ∈ Λ+.

The weight monoid Γ(X) of X is the set of highest weights of C[X], that is

Γ(X) :=
{
λ ∈ Λ+ : HomG(V (λ),C[X]) �= {0}

}
.

As proved by Losev in [Los09, Theorem 1.3], a smooth affine spherical G-
variety X is uniquely determined by Γ(X), up to G-equivariant isomorphism.
If a ∈ t+ ⊂ k∗ then the complexification KC

a of the stabilizer Ka of a is a
complex connected reductive subgroup of G. Since Ka contains T its weight
lattice is still Λ. The Weyl chamber of Ka and KC

a corresponding to the
maximal unipotent subgroup N ∩KC

a of KC
a is R≥0(t+ − a) ⊂ t∗.

Example 2.8. We take K = U(2) and use the notation of Example 2.1. If
a ∈ t+ then

KC

a =
{

GL(2) if 〈α∨, a〉 = 0;
TC if 〈α∨, a〉 > 0

and the corresponding positive Weyl chamber of KC
a is

R≥0(t+ − a) =
{
t+ if 〈α∨, a〉 = 0;
t∗ if 〈α∨, a〉 > 0

We can now specialize Knop’s Theorems 10.2 and 11.2 from [Kno11] to
the case of compact connected multiplicity free Hamiltonian manifolds with
trivial principal isotropy group.

Theorem 2.9 (Knop). (a) Suppose (M,ωM , μM ) and (N,ωN , μN ) are
multiplicity free K-manifolds with trivial principal isotropy group. If
P(M) = P(N), then there exists a K-equivariant symplectomorphism
ϕ : M → N such that μN ◦ ϕ = μM .

(b) Let Q be a convex polytope in t+. There exists a multiplicity free K-
manifold M with trivial principal isotropy group such that P(M) = Q if

For the author's personal use only.
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and only if for every vertex a of Q there exists a smooth affine spherical
(Ka)C-variety Xa such that

Γ(Xa) generates the weight lattice Λ as a group, and(2.14)
Q− a and Γ(Xa) generate the same convex cone in t∗.(2.15)

Remark 2.10. (a) The fact that the principal isotropy group of the K-
action on M is trivial is encoded in condition (2.14) of Theorem 2.9.
Knop’s classification result [Kno11, Theorem 11.2] makes no restrictions
on the principal isotropy group, which is encoded as a sublattice of Λ.

(b) When K is a torus, Theorem 2.9 is a well-known result due to Th.
Delzant; see [Del88]. Furthermore, part (a) of Theorem 2.9 is a spe-
cial case of a conjecture due to Delzant. He also proved his conjecture
when rk(K) = 2 in [Del90]. Knop proved it in general in [Kno11, The-
orem 10.2].

(c) Thanks to [PVS19], the criterion in part (b) of Theorem 2.9 can be
checked combinatorially (or algorithmically), i.e. without having to ac-
tually produce the spherical varieties Xa. On the other hand, in Sec-
tion 3 below we will distill from [PPVS18] all smooth affine spherical
GL(2)-varieties X such that Γ(X) generates Λ as a group and the con-
vex cone generated by Γ(X) is pointed.

(d) Referring to [Kno11, Section 2] for details, we briefly sketch how the
(Ka)C-variety Xa yields a “local model” of the multiplicity free K-
manifold M in Theorem 2.9(b) with P(M) = Q. One can define a
structure of a Hamiltonian K-manifold on the homogeneous fiber bun-
dle K×Ka Xa such that a K-stable open subset of K×Ka Xa is isomor-
phic (as a Hamiltonian K-manifold) to a neighborhood of the K-orbit
μ−1(K · a) in M .

Homogeneous fiber bundles

To explicitly describe multiplicity free U(2)-manifolds in Section 4, we will
make use of homogeneous fiber bundles, which are also known as associated
bundles or twisted products. We recall their basic properties in the category of
differentiable manifolds, then in that of algebraic varieties, and finally state
a comparison result that we will need later.

If G is group, H is a subgroup of G and F is a set on which H acts, then
we denote by G×H F the quotient set of G×F for the following action of H

(2.16) h · (g, f) = (gh−1, h · f) for g ∈ G, h ∈ H, f ∈ F.
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As the left action of G on G×F , g·(g′, f) = (gg′, f) commutes with this action
of H, we obtain a G-action on G×H F . We will use π for the G-equivariant
quotient map

π : G× F → G×H F, (g, f) �→ [g, f ]
and p for the (well-defined) G-equivariant map

p : G×H F → G/H, [g, f ] �→ gH.

We begin with standard facts about the “differentiable” version of G×HF
and sketch a proof for the sake of completeness.

Proposition 2.11. Let G be a compact connected Lie group, H a closed
subgroup and F a manifold equipped with a smooth action of H. Then the
following hold:

(a) G×H F admits a unique structure as a manifold such that
(i) π : G× F → G×H F is a smooth map; and
(ii) for an arbitrary manifold N a map h : G×H F → N is smooth if

and only if h ◦ π is smooth.
When G ×H F is equipped with this structure, the map p : G ×H F →
G/H and the action map G× (G×H F ) → G×H F are smooth;

(b) If f : M → G/H is a smooth G-equivariant map, where M is a manifold
equipped with a smooth action of G, and A = f−1(eH), then A is a
smooth H-invariant submanifold of M and the map

G×H A → M, [g, a] �→ g · a

is a G-equivariant diffeomorphism, if G×HA carries the manifold struc-
ture of part (a).

Proof. The characterization of the manifold structure on G×H F in part (a)
is a consequence of the basic fact that the quotient of a manifold under a free
action of a compact Lie group is a manifold; see, for instance, [Kaw91, Theo-
rem 4.11]. That p is smooth now follows, because p ◦ π : G → G/H, g �→ gH
is a smooth map, see e.g. [Kaw91, Theorem 3.37]. Furthermore, the afore-
mentioned Theorem 4.11 in [Kaw91] also tells us that π has smooth local
cross-sections, from which one can deduce that the action map is smooth. We
turn to part (b). One observes that eH is a regular value of f , that the two
manifolds G×H A and M have the same dimension and that the given map
G×H A → M is G-equivariant and injective. With standard arguments, one
then shows that the map’s differential is surjective everywhere.
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Before stating an algebraic version of Proposition 2.11 we recall that if
H is a closed algebraic subgroup of a linear algebraic group G, then the
coset space G/H carries a unique structure of algebraic variety such that the
canonical surjection G → G/H is a so-called geometric quotient for the action
of H on G from the right. Equipped with this structure, as it always will be,
G/H is a smooth quasi-projective variety and the action map

G× (G/H) → G/H, (g, g′H) �→ gg′H

is a morphism of algebraic varieties (see, for example, [TY05, 25.4.7 and
25.4.10]).

The following proposition, which summarizes properties of the “algebraic”
homogeneous fiber bundle, is extracted from [PV94, Section 4.8]; see also
[Tim11, Theorem 2.2].

Proposition 2.12. Let G be a complex connected reductive linear algebraic
group, H a closed algebraic subgroup and F a smooth quasi-projective H-
variety. Equip G ×H F with the quotient Zariski-topology (i.e. the coarsest
topology which makes π : G× F → G×H F continuous, where G× F carries
the Zariski-topology) and with the sheaf O which is the direct image under π
of the sheaf of H-invariant regular functions on G × F . Then the following
hold:

(a) The ringed space (G×H F,O) is a smooth complex algebraic variety;
(b) The maps π and p and the action map G × (G ×H F ) → G ×H F are

morphisms of algebraic varieties.

The next proposition recalls a standard fact in the theory of complex
algebraic varieties, see [Ser56, Nr. 5]

Proposition 2.13. (a) If X is a smooth complex algebraic variety, then
X admits a unique structure as a complex manifold such that every
algebraic chart of X is a holomorphic chart. We write Xh for X equipped
with this structure of complex manifold.

(b) If X and Y are smooth complex algebraic varieties and f : X → Y a
morphism of algebraic varieties, then f : Xh → Y h is holomorphic.

A complex manifold carries a natural structure of a differentiable mani-
fold, by viewing the holomorphic charts as C∞-charts. Thus Proposition 2.13
also equips every smooth algebraic variety with a structure of differentiable
manifold, which we will call standard. Whenever we view a smooth algebraic
variety as a differentiable manifold it will be equipped with this standard
structure. In Section 4 we will make use of the following comparison result.
We include a proof for completeness.
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Proposition 2.14. Consider the subgroup

(2.17) B− :=
{(

a 0
c d

)
: a, c, d ∈ C, ad �= 0

}

of GL(2) and recall the torus T ⊂ U(2) from Example 2.1. If F is a smooth
quasi-projective B−-variety and we equip GL(2)×B−F with its standard struc-
ture as a differentiable manifold, then

(2.18) U(2) ×T F → GL(2) ×B− F, [g, f ] �→ [g, f ]

is a U(2)-equivariant diffeomorphism.

Proof. We equip GL(2) and GL(2)/B− with their standard structures as
differentiable manifolds. Then U(2) is a closed subgroup of the Lie group
GL(2). The inclusion U(2) → GL(2) induces a transitive smooth action of
U(2) on GL(2)/B−. Since B− ∩ U(2) = T we thus obtain — using [Kaw91,
Corollary 4.4] for example — a U(2)-equivariant diffeomorphism U(2)/T →
GL(2)/B−. Let ϕ : GL(2)/B− → U(2)/T be the inverse diffeomorphism and
recall the map

p : GL(2) ×B− F → GL(2)/B−, [g, f ] → gB−.

Then ϕ ◦ p : GL(2)×B− F → U(2)/T is a U(2)-equivariant smooth map. The
claim now follows from (b) in Proposition 2.11.

Remark 2.15. The argument for Proposition 2.14 actually yields the follow-
ing more general fact. Suppose K is a compact connected Lie group and G its
complexification. Let T be a maximal torus of K and B be a Borel subgroup
of G containing T . If F is a quasi-projective B-variety and we equip G×B F
with its standard structure as a differentiable manifold, then

K ×T F → G×B F, [k, f ] �→ [k, f ]

is a K-equivariant diffeomorphism.

3. Multiplicity free U(2)-actions with trivial principal
isotropy group

Let M be a multiplicity free U(2)-manifold with trivial principal isotropy
group. It follows from Theorem 2.9 and Example 2.8 that “near” a vertex
lying on the wall of the Weyl chamber t+, the momentum polytope P(M)
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of M “looks like” the weight monoid of a smooth affine spherical GL(2)-
variety. In Table 1, we distill a list of all relevant smooth affine spherical
GL(2)-varieties from a result in [PPVS18]. This then allows us to make the
conditions (2.14) and (2.15) very concrete in Proposition 3.3.

Weight monoids of smooth affine spherical GL(2)-varieties

Table 5 in [PPVS18] contains all the smooth affine spherical (SL(2) × C×)-
varieties and their weight monoids. We briefly explain how to use this classi-
fication to explicitly determine the weight monoids of smooth affine spherical
GL(2)-varieties. We will make use of the notation in Example 2.1. In partic-
ular, the weight lattice Λ of GL(2) is spanned by the weights ω1, ω2.

As in [PPVS18] we choose

H =
{(

a 0
0 a−1

)
: a ∈ C×

}
× C×

as the maximal torus and

N =
{(

1 b
0 1

)
: b ∈ C

}
× {1}

as the maximal unipotent subgroup of SL(2) × C× normalized by H. The
weights ω : H → C× and ε : H → C× defined by

ω

((
a 0
0 a−1

)
, z

)
= a, and ε

((
a 0
0 a−1

)
, z

)
= z

span the weight lattice Hom(H,C×) of SL(2)×C× and the monoid of domi-
nant weights corresponding to N is

spanN{ω, ε,−ε} ⊂ Hom(H,C×).

We define the isogeny

(3.1) ϕ : SL(2) × C× → GL(2) : (A, z) �→ zA

and denote the induced (injective) map Λ → Hom(H,C×) on weight lattices
by ϕ∗. Then Γ ⊂ Λ+ is the weight monoid of a smooth affine spherical GL(2)-
variety if and only if ϕ∗(Γ) ⊂ spanN{ω, ε,−ε} is the weight monoid of a
smooth affine spherical (SL(2) × C×)-variety. Since

ϕ∗(ω1) = ω + ε and ϕ∗(ω2) = 2ε
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Table 1: Pointed weight cones of smooth affine spherical GL(2)–varieties X
with ZΓ(X) = Λ. The “Case” numbers refer to those in [PPVS18, Table 5]

Case X R≥0Γ(X) parameters

11
(
C

2 ⊗ Cdet−(k+1)

)
× Cdet−� cone((k + 1)ε1 + kε2, �(ε1 + ε2))

k ∈ Z,
� ∈ {1,−1}

14 GL(2) ×TC C−(jα+ε1) cone(α, jα + ε1) j ∈ N

14 GL(2) ×
TC C−(jα−ε2) cone(α, jα − ε2) j ∈ N

15 GL(2)
/{(

zj 0
0 zj+1

)
: z ∈ C

×
}

cone(jα + ε1, jα − ε2) j ∈ N

α = ε1 − ε2 as in Example 2.1.
In Case 11, C2 stands for the defining representation of GL(2).

we have
ϕ∗(Λ) = {aω + bε : a ≡ b mod 2}

and it follows that the images under ϕ∗ of the weight monoids of smooth
affine spherical GL(2)-varieties are exactly those weight monoids in [PPVS18,
Table 5] which are subsets of {aω + bε : a ≡ b mod 2}.

In view of part (b) of Theorem 2.9 we restrict ourselves to those weight
monoids Γ of smooth affine spherical GL(2)-varieties such that the cone R≥0Γ
generated by Γ is pointed (as defined in Remark 2.4(a)) and such that ZΓ = Λ.
This yields the weight monoids listed in Table 1. In fact, in view of Knop’s
condition (2.15), we list the weight cones R≥0Γ ⊂ t+ instead of the weight
monoids. The cone R≥0Γ determines Γ because we have fixed the lattice ZΓ
generated by Γ to be Λ and because of the equality Γ = ZΓ ∩ R≥0Γ, which
follows from the fact that smooth varieties are normal. In summary, these
computations yield the following proposition.

Proposition 3.1. If X is a smooth affine spherical GL(2)-variety such that
ZΓ(X) = Λ and such that R≥0Γ(X) is pointed, then R≥0Γ(X) is one of the
cones listed in Table 1.

Remark 3.2. As they provide local models of multiplicity free U(2)-manifolds
with trivial principal isotropy group, we have included in Table 1 the (unique)
smooth affine spherical GL(2)-varieties X that realize the listed weight cones
R≥0Γ(X). We leave the verification that each variety X in the table has the
given weight cone to the reader. This can be deduced from [PPVS18, Table 5]
using the isogeny ϕ defined in (3.1) or by using basic facts in the representa-
tion theory of GL(2) to determine the highest weights of GL(2) that occur in
the coordinate ring C[X] of X.
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Momentum polytopes

In Proposition 3.3 we specialize Knop’s Theorem 2.9 to the case K = U(2).
We continue to use the notation in Example 2.1. In particular, α = ε1 − ε2 is
the simple root of U(2). Combining Table 1 with Theorem 2.9 we obtain the
following.

Proposition 3.3. Let P be a convex polytope in t+. Then P is the momentum
polytope of a (unique) multiplicity free U(2)-manifold with trivial principal
isotropy group if and only if all of the following conditions are satisfied:

(1) dimP = 2;
(2) P is rational with respect to Λ, i.e. for every two vertices a, b of P con-

nected by the edge [a, b] of P, the intersection R(b− a)∩Λ is nonempty
(we will denote the primitive elements of Λ on the extremal rays of the
cone R≥0(P − a) by ρa1, ρ

a
2);

(3) (Delzant) If a is a vertex of P with 〈α∨, a〉 > 0, then (ρa1, ρa2) is a basis
of Λ;

(4) If a is a vertex of P with 〈α∨, a〉 = 0, then {ρa1, ρa2} is one of the
following sets:

{ε1 + ε2, k(ε1 + ε2) + ε1} for some k ∈ Z;(3.2)
{−(ε1 + ε2), k(ε1 + ε2) + ε1} for some k ∈ Z;(3.3)
{α, jα + ε1} for some j ∈ N;(3.4)
{α, jα− ε2} for some j ∈ N;(3.5)
{jα + ε1, jα− ε2} for some j ∈ N.(3.6)

Proof. Thanks to Knop’s Theorem 2.9, the cones in the third column of Ta-
ble 1 describe the “local” shape, near a vertex that lies on the wall of the
Weyl chamber t+, of the momentum polytope P of a multiplicity free U(2)-
manifold with trivial principal isotropy group. If a is a vertex of P that lies
in the interior of t+, we have (Ka)C = TC. The shape of P near a must be
as described in part (3) of the proposition due to the well-known structure of
the weight monoids of smooth affine toric varieties (see, e.g. [Ful93, Section
2.1]). The proposition follows.

In Remark 3.4 we give some geometric information related to vertices
of the momentum polytopes under consideration in Proposition 3.3. We first
introduce some additional notation. Suppose (M,μ) is a multiplicity free U(2)-
manifold with momentum polytope P. Let

(3.7) Ψ : M → P ⊂ t+, m �→ μ(K ·m) ∩ t+
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be the invariant momentum map of M and let μT : M → t∗ be the
momentum map of M considered as a T -manifold, that is μT = r ◦ μ, where
r : k∗ ↠ t∗ is the restriction map. We recall from Remark 2.7(b) that every
fiber of Ψ is a K-orbit and from Proposition 2.5 that μT (M) is the convex
hull of P ∪ sα(P).

Remark 3.4 (Vertices and fixed points). Let P be a polytope satisfying
the conditions in Proposition 3.3 and let M be the multiplicity free U(2)-
manifold with trivial principal isotropy group such that P(M) = Ψ(M) = P.
The local models X of M given in Table 1 yield the following information
(see also Remark 2.10(d)).

(a) If a is as in case (3) of Proposition 3.3, Ψ−1(a) contains exactly two
T -fixed points p1, p2 and μT (p1) = sα(μT (p2)).

(b) If the extremal rays at a are those in Eq. (3.2) or Eq. (3.3), then there
is a unique T -fixed point p in Ψ−1(a). Moreover μT (p) = a and p is
fixed by the whole group U(2).

(c) In the cases of Eqs. (3.4) and (3.5), there are exactly two T -fixed points
p1, p2 in Ψ−1(a). Moreover μT (p1) = μT (p2) = a.

(d) In the case of Eq. (3.6), Ψ−1(a) does not contain any T -fixed points.

Invariant compatible complex structures

We recall that a complex structure J on a symplectic manifold (M,ω) is
called compatible if (M,ω, J) is Kähler. In [Woo98a], Woodward showed that
Delzant’s result in [Del88, §5], that all compact multiplicity free torus ac-
tions admit an invariant compatible complex structure, does not generalize
to the non-abelian case (see also Example 3.9 below). In this section we
present a generalization of a criterion of Woodward’s for the existence of
a U(2)-invariant compatible complex structure on certain multiplicity free
U(2)-manifolds. More precisely, in [Woo98b, Theorem 8.8], Woodward pro-
vided such a criterion for a class of multiplicity free SO(5)-manifolds and
remarked that it could be adapted to other rank 2 groups. In case the acting
group is U(2), Woodward’s criterion applies to those multiplicity free U(2)-
manifolds with trivial principal isotropy whose momentum polytope has a
vertex on the wall of the Weyl chamber and is reflective. This term, which
was introduced by Woodward in [Woo96, Definition 1.1] for polytopes in the
Weyl chamber of any compact connected Lie group, means the following for
the momentum polytope P of a multiplicity free U(2)-manifold with trivial
principal isotropy group: P is reflective, if it has at most one vertex on the
wall of the Weyl chamber and when it does, P looks like one of the cones
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spanned by the vectors in (3.6) near this vertex. For example, the triangles in
Fig. 6 and in Eq. (4.5) are reflective, whereas those in Figs. 3 and 4 are not.
Thanks to the work [MT12] of J. Martens and M. Thaddeus on non-abelian
symplectic cutting we can show that Woodward’s criterion can be used to
decide the existence of a U(2)-invariant compatible complex structure for any
multiplicity free U(2)-manifold with trivial principal isotropy, that is, also
for those whose momentum polytope is not reflective; see Proposition 3.7.
In the proof of Proposition 3.7 we use the so-called extension criterion of
Tolman [Tol98] to show in Proposition 3.17 that a multiplicity free U(2)-
manifold with trivial principal isotropy group carries a U(2)-invariant com-
patible complex structure if and only if it carries a T -invariant compatible
complex structure. Woodward had proved an analogous statement for certain
multiplicity free SO(5)-manifolds in [Woo98b, Theorem 9.1]. Proposition 3.17
also gives a second Kählerizability criterion for our U(2)-manifolds in terms
of the T -momentum polytope and the images of the T -fixed points under the
T -momentum map.

Recall that the wall of the Weyl chamber t+ of U(2) is its subset {λ ∈ t∗ :
〈α∨, λ〉 = 0}, where α∨ is the simple coroot as in (2.2) of Example 2.1.

Definition 3.5. Let P be a 2-dimensional polytope in the Weyl chamber
t+ of U(2), let F be an edge of P and let nF be an inward-pointing normal
vector to F . We call F a positive edge of P if 〈α∨, nF 〉 > 0.

Remark 3.6. (a) In [Woo98b], the edges we call “positive” are called “non-
negative”.

(b) It follows from Proposition 3.3 that if the momentum polytope P(M)
of a multiplicity free U(2)-manifold with trivial principal isotropy group
has exactly one vertex a on the wall of t+, then R≥0(P(M) − a) is the
cone spanned by one of the sets {ρa1, ρa2} in Eqs. (3.4) to (3.6) of that
proposition. In particular, P(M) has one or two positive edges that
contain a.

Here is the announced generalization for U(2) of Woodward’s Kähleriz-
ability criterion [Woo98b, Theorem 8.8]. Its formal proof will be given on
page 1800.

Proposition 3.7. Suppose M is a multiplicity free U(2)-manifold with trivial
principal isotropy group. Then M admits a U(2)-invariant compatible complex
structure if and only if the following property holds: if the momentum polytope
P(M) of M has exactly one vertex on the wall of t+, then every positive edge
of P(M) contains that vertex.
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Remark 3.8. Instead of using the symplectic argument based on [MT12],
one could also prove Proposition 3.7 with a straightforward adaptation of
the proof of Proposition 7.27 and Corollary 7.28 in [CFPVS20], by applying
Theorem 7.16 of op.cit., which is a rather technical general criterion for the
existence of an invariant compatible complex structure on a multiplicity free
manifold. This alternative proof requires the intricate combinatorial theory
of spherical varieties.

Example 3.9 (Woodward). In [Woo98a], Woodward showed that the mul-
tiplicity free U(2)-manifold M with momentum polytope

P(M) = conv(0, ε1,−ε2, 3ε1 − ε2)

is not Kählerizable. This fact can be deduced immediately from Proposi-
tion 3.7: the edge of P(M) connecting the vertices ε1 and 3ε1 − ε2 is positive,
but does not contain the vertex 0 of P(M) that lies on the wall of the Weyl
chamber. A picture of P(M) can be found on page 1800: it is the trapezoid
with vertices 0, v1, v2 and v3 on the right in Fig. 1. Similarly, the multiplicity
free U(2)-manifold with momentum polytope

conv(0, ε1, α, 3ε1 − ε2)

is not Kählerizable, because the edge connecting ε1 and 3ε1 − ε2 is positive
and does not contain the vertex 0. This polytope is the trapezoid with vertices
v0, v1, v2 and v3 on the right in Fig. 2. This kind of polytope was not covered
by the criterion in [Woo98b].

The following lemma establishes the first part of Proposition 3.7.

Lemma 3.10. If M is a multiplicity free U(2)-manifold whose momentum
polytope P does not have exactly one vertex on the wall of the Weyl chamber
t+, then M admits a U(2)-invariant complex structure.

Proof. Our strategy is inspired by [Woo98a, §3] and uses E. Lerman’s symplec-
tic cutting [Ler95]; see also [LMTW98]. We start with a certain multiplicity
free (non-compact) U(2)-manifold M1 admitting a second Hamiltonian ac-
tion of the maximal torus T of U(2) that commutes with the U(2)-action and
such that φ(m) = Ψ(m) for all m ∈ M , where φ : M1 → t∗ is the momentum
map of the second T -action. We then perform a sequence of symplectic cuts
(respecting the actions of both U(2) and T ) until the momentum polytope
has the desired shape P. Because P is of Delzant type (by Proposition 3.3),
it can be obtained from φ(M1) = Ψ(M1) by a finite sequence of cuts along

For the author's personal use only.

For the author's personal use only.



1794 Oliver Goertsches et al.

hyperplanes such that, at each stage, the corresponding symplectic cut yields
a smooth manifold.

We first assume that an entire edge of the momentum polytope P lies on
the Weyl wall. Let v be one of the two vertices of P on the Weyl wall and
suppose that

cone(P − v) = cone(−(ε1 + ε2), ε1 + k(ε1 + ε2)) for some k ∈ Z.

We set M1 = C3 and equip it with the U(2)-action given by

g · ((z1, z2), z3) := ((det(g)−(k+1) · g) · (z1, z2), det(g) · z3)

(this is precisely the action in the first row of Table 1 for 
 = −1) and the
standard Hamiltonian U(2)-structure as a representation of U(2); see e.g.
[Sja98, Example 2.1]. The explicit expression for the invariant momentum
map Ψ is then

Ψ : M1 → t+, Ψ(z1, z2, z3) = π

2 (|z1|2 + |z2|2)((k + 1)ε1 + kε2)

− π

2 |z3|2(ε1 + ε2).

Indeed, the restriction of the momentum map of M1 to the cross-section
0 ⊕ C⊕ C takes values in t∗ and is thus given by the momentum map of the
T -action on 0 ⊕ C⊕ C, which is

(0, z2, z3) �→
π

2 |z2|2((k + 1)ε1 + kε2) −
π

2 |z3|2(ε1 + ε2).

As Ψ is constant on U(2)-orbits, it now follows that it is of the asserted shape.
We also equip M1 with the following additional action of T :

(t1, t2) · (z1, z2, z3) = (t2(t1t2)−(k+1)z1, t2(t1t2)−(k+1)z2, t1t2z3).(3.8)

This action is effective and commutes with the U(2)-action. More importantly,
it is Hamiltonian with momentum map φ equal to Ψ. We can use φ to perform
the aforementioned sequence of symplectic cuts until the momentum image
of φ is equal to P. Since φ and Ψ coincide on M1, they will coincide after
every cut. By the uniqueness part of Knop’s Theorem 2.9, the U(2)-manifold
obtained at the end of this process is M . Because the action (3.8) of T on
M1 preserves the complex structure on M1 and the cuts above are made with
respect to circle subgroups of T , it follows from basic properties of symplectic
reduction, that the manifold M is still Kähler; see [GS82, Theorem 3.5].
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If P lies in the interior of the Weyl chamber, then we can still start with
(for example) M1 (for some suitable choice of the parameter k) and we can
again cut Ψ(M1) = φ(M1) until we reach P.

Remark 3.11. Even though the symplectic cuts in the proof of Lemma 3.10
result in a Kähler manifold, it is not true that a non-abelian symplectic cut of
a Hamiltonian K-manifold with a compatible K-invariant complex structure
always inherits a complex structure, because the cut may require a symplectic
reduction by a circle group which does not preserve the complex structure.
For example, Woodward constructed his non-Kählerizable Example 3.9, by
applying symplectic cutting to a Kähler manifold.

Remark 3.12. The Kähler structures constructed in the proof of Lemma 3.10
are in fact toric Kähler structures for a torus of rank 3. Indeed, the constructed
manifold carries an induced T × T -action after every cut. Its kernel always
has dimension 1, which means that it descends to a multiplicity free action
of a torus of rank 3.

We now use [MT12, Corollary 4] to establish the next part of Proposi-
tion 3.7.

Lemma 3.13. Let M be a multiplicity free U(2)-manifold with trivial princi-
pal isotropy group. Suppose that the momentum polytope P of M has exactly
one vertex a on the wall of t+. If every positive edge of P contains the vertex
a, then M admits a U(2)-invariant compatible complex structure.

Proof. It follows from Proposition 3.3 that {ρa1, ρa2} is one of the sets in (3.4),
(3.5) or (3.6). Let M1 be the corresponding smooth affine spherical GL(2)-
variety in Table 1, that is, M1 = GL(2) ×TC C−(jα+ε1) when {ρa1, ρa2} is the
set in (3.4), M1 = GL(2) ×TC C−(jα−ε2) when {ρa1, ρa2} is the set in (3.5) and

M1 = GL(2)
/{(

zj 0
0 zj+1

)
: z ∈ C×

}
when {ρa1, ρa2} is the set in (3.6). As in

[Sja98, §4.1], we view M1 as a Hamiltonian U(2)-manifold by embedding it
into a unitary representation of U(2). Let Ψ : M1 → t+ be the corresponding
invariant momentum map. It follows from [Sja98, Theorem 4.9] that Ψ(M1) =
cone{ρa1, ρa2}. By translating the momentum map of M1 by a, we ensure that
Ψ(M1) = a + cone{ρa1, ρa2} = a + cone(P − a), in other words, that Ψ(M1) is
equal to P in a neighborhood of a. One can now apply non-abelian symplectic
cutting to M1 to obtain a multiplicity free U(2)-manifold with momentum
polytope P. By Knop’s uniqueness result in Theorem 2.9, this multiplicity
free manifold has to be M . Because, as mentioned in Remark 3.11, non-
abelian symplectic cutting is a local construction which cannot be realized by
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“global” symplectic reduction, this does not yet guarantee that M is Kähler,
even though M1 was.

Nevertheless, under the assumptions of the current lemma, [MT12, Corol-
lary 4] yields that M can be constructed as the symplectic reduction of a
symplectic U(2)-manifold M̃ , which is Kähler because M1 is. It then follows
that M is Kähler by the general properties of symplectic reduction. The key
point which allows us to apply loc.cit. is that

(3.9) P = Ψ(M1) ∩ Q,

where Q is an outward-positive polyhedral set, using the terminology of [MT12,
Definition 3]. To describe Q, let n1, n2, . . . , nr be inward-pointing normal vec-
tors to the r edges of P that do not contain the vertex a of P lying on the
wall of t+. By assumption

(3.10) 〈α∨, ni〉 ≤ 0 for all i ∈ {1, 2, . . . , r}.

Let η1, η2, . . . , ηr ∈ R be such that, for each i ∈ {1, 2, . . . , r},

P ∩ {v ∈ t+ : 〈v, ni〉 = ηi}

is the edge of P to which ni is an inward-pointing normal. Now we set

Q = {v ∈ t+ : 〈v, ni〉 ≥ ηi for all i ∈ {1, 2, . . . , r}}.

Then (3.9) holds, and (3.10) says precisely that Q is outward-positive. As ex-
plained in [MT12, Remark 2], one may need to (and can) impose some extra
inequalities to make Q universal in the parlance of [MT12, Definition 2].

Remark 3.14. In the situation of Lemma 3.13, if P has a positive edge not
containing a, then it has one that is adjacent to an edge containing a. This
follows from the convexity of P.

For the final step in the proof of Proposition 3.7, we will make use of
work of S. Tolman’s. In [Tol98], she constructed an example of a Hamiltonian
T -space of complexity one in dimension six that does not admit a T -invariant
compatible complex structure. She proved this by checking that her example
does not satisfy a certain extension criterion and showing that this criterion
is necessary for a T -invariant compatible complex structure to exist. For the
convenience of the reader, we will recall this criterion here together with the
definitions necessary to formulate it. The criterion applies to compact Hamil-
tonian U(1)n-manifolds for any n ∈ N, but to avoid introducing additional
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notation, we will use T for the acting torus, as this is the setting where we
will apply it. We refer to [Tol98, §§2,3] for details.

By the x-ray of M , we mean its orbit type stratification

X =
⋃

H subgroup of T
{connected components of MH}

together with the convex polytopes that are the images of its elements under
the T -momentum map μT . We say that a convex polytope Δ ⊂ t∗ (resp. a
strictly convex cone C ⊂ t∗) is compatible with this x-ray if (there exists a
neighborhood U of the vertex of C such that) for each face σ of Δ (resp. C),
we can choose Xσ ∈ X such that

dim(μT (Xσ)) = dim(σ),(3.11)
σ ⊂ μT (Xσ) (resp. σ ∩ U ⊂ μT (Xσ)), and(3.12)
Xσ ⊂ Xσ′ whenever σ and σ′ are faces of Δ (resp. C) with σ ⊂ σ′.(3.13)

We say that Δ is an extension of C when there exists a neighborhood U of
the vertex of C with C ∩ U = Δ ∩ U .

Definition 3.15. An x-ray satisfies the extension criterion if every com-
patible strictly convex cone admits an extension to a compatible convex poly-
tope.

Theorem 3.16 ([Tol98, Theorem 3.3]). Let M be a Hamiltonian T -manifold
that does not satisfy the extension criterion. Then M does not admit a T -
invariant compatible complex structure.

It is clear that a compatible convex cone of dimension one always admits
an extension to a compatible convex polytope, so this criterion only needs
to be checked for compatible strictly convex cones of dimension at least two.
On the other hand, since our μT takes values in a vector space of dimension
2, we only need to check this condition for compatible strictly convex cones
of dimension exactly two. The vertices of those have to be image of a T -
fixed point p, and the edges locally have to be images of weight spaces of
the corresponding isotropy representation of T at p. Consequently, we can
describe every such cone by giving two line segments starting at μT (p) that
correspond to linearly independent weights of the isotropy representation at
p, and any such line segment can be described by a pair of points in PT =
μT (M), one of which is μT (p). We will use this identification throughout.

Combinatorially linking Tolman’s criterion to the Kählerizability crite-
rion of Proposition 3.7 we now also extend [Woo98a, Theorem 9.1] of Wood-
ward’s about certain multiplicity free SO(5)-manifolds to multiplicity free
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U(2)-manifolds with trivial principal isotropy whose momentum polytope in-
tersects the Weyl wall in one point. We also rephrase our Kählerizability
criterion in terms of the T -momentum polytope and the T -fixed points.

Proposition 3.17. Let M be a multiplicity free U(2)-manifold with trivial
principal isotropy group whose momentum polytope P intersects the Weyl wall
at exactly one point. Then the following are equivalent:

(1) Every positive edge of P contains the vertex a of P lying on the Weyl
wall.

(2) M admits a U(2)-invariant compatible complex structure.
(3) M admits a T -invariant compatible complex structure.
(4) The x-ray of M satisfies the extension criterion.
(5) The set MT is mapped to the boundary of PT = μT (M) under the

T -momentum map μT .

Proof. First we show that (5) implies (1). If (1) does not hold, then P contains
a positive edge that does not meet the wall of the Weyl chamber. This means
that the two vertices v and w adjacent to this edge are the images under μ as
well as under μT of T -fixed points in M , see Theorem 2.3(a). Call the vertex
of P on the wall of the Weyl chamber v0, and set v′ = sα(v), w′ = sα(w).
Then it follows from Proposition 2.5 that the polytope

(3.14) conv(v0, v, v′,w,w′)

is a subset of PT . Using that the edge (v,w) of P is positive, elementary
geometric considerations show that v or w lies in the interior of the poly-
tope (3.14), and therefore not on the boundary of PT (see the polytope
P = conv(v0, v1, v2, v3), with PT = conv(v2, v

′
2, v

′
3, v3), on the right of Fig. 1

below for an example). This shows that (5) does not hold.
We turn to the implication “(1) ⇒ (5).” Let m ∈ MT . First observe that

μ(m) ∈ (k∗)T = t∗ by the equivariance of μ, and therefore that μT (m) = μ(m).
Next, μT (m) ∈ {Ψ(m), sα(Ψ(m))} thanks to the well-known isomorphism
k∗/K ∼= t∗/{e, sα} induced by the restriction map k∗ → t∗. Furthermore,
Ψ(m) is a vertex of P = Ψ(M). Indeed, if Ψ(m) lies on the Weyl wall, this
is true by assumption and if Ψ(m) lies in the interior of the Weyl chamber,
then it follows from Theorem 2.3(b) because dimR Tm(K · m) = 2. We first
consider the case that μT (m) lies on the Weyl wall. Then μT (m) = v0 and
it follows from parts (c) and (d) of Remark 3.4 that v0 is of type (3.4) or
of type (3.5). Let (v0, v) be the edge of P that is perpendicular to the Weyl
wall. Then, using Proposition 2.5, one deduces that (sα(v), v) is an edge of
PT and therefore that v0 = μT (m) lies on the boundary of PT . Suppose
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now that (5) does not hold and that m ∈ MT is such that μT (m) does not
lie on the boundary of PT . As we just saw, this implies that μT (m) does
not lie on the Weyl wall. It follows from Proposition 2.5 that the segment
[μT (m), sα(μT (m))] = [Ψ(m), sα(Ψ(m))], which is perpendicular to the Weyl
wall, lies in the interior of PT . Therefore (at least) one of the two edges of P
adjacent to Ψ(m) is positive and does not meet the Weyl wall, which means
that (1) does not hold. We have shown that (5) follows from (1).

Next, we observe that (2) follows from (1) by Lemma 3.13, that the im-
plication “(2) ⇒ (3)” is trivial and that (4) follows from (3) by Theorem 3.16.

In the remainder of the proof, we show that (4) implies (1). We label the
vertices of P clockwise from v0 to vn (starting at the wall), and we denote by
v′j the reflection sα(vj) of vj across the Weyl wall. Note that for j �= 0 the line
segment (vj , v′j) is always the image of a connected component of MZ(U(2)),
where Z(U(2)) is the center of U(2), and that this connected component is
a sphere except when an edge of P adjacent to vj is parallel to α, in which
case it is 4-dimensional by Theorem 2.3(b) together with Remark 2.4(b).

We consider two cases, depending on whether the vertex v0 is of type (3.4)
(respectively of type (3.5), which is clearly equivalent) or of type (3.6). In each
case, the edges of the x-ray are determined by P in the following way:

• In the first case, there are the aforementioned connected components of
MZ(U(2)) together with all spheres belonging to those edges (vj , vj+1)
and (v′j , v′j+1) which are not parallel to α.

• In the second case, there are the connected components of MZ(U(2)) to-
gether with all spheres belonging to those edges (vj , vj+1) and (v′j , v′j+1),
j ≤ n−1, which are not parallel to α, and on top the spheres belonging
to (vn, v′1) and (v1, v

′
n). The latter are included, because the horizontal

edge starting from v1, for example, needs to end in one of v′1, . . . , v′n,
and due to the convexity of the reflection of P across the Weyl wall,
the only possible endpoint is then v′n.

Assume that we are in the second case: v0 is of type (3.6). Suppose that (1)
does not hold (a polytope illustrating this situation can be found on the right
in Fig. 1). By Remark 3.14 and without loss of generality, we may assume
that the positive edge is the edge (v1, v2). Then v1 and v′1 are in the interior
of PT . We claim that the compatible cone determined by the pair of edges
(v1, v

′
1), (v1, v

′
n) does not admit an extension to a compatible convex polytope.

Indeed, the edge (v′1, vn) emerging from vn cannot be part of such a polytope
(since this edge intersects the edge (v1, v

′
n) in a point which is not the image

of a T -fixed point) and neither can the edge (v′1, v′2) as convexity would not
hold.
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v0

v3 v2

v1v′3

v′1
v′2

v3

v0

v2

v1v′3

v′1

v′2

Figure 1: Two polytopes P with v0 of type (3.6) and their x-rays. The left
x-ray satisfies the extension criterion, the right one does not.

Now assume that we are in the second case: v0 is of type (3.4). Suppose
again that (1) does not hold (such a polytope is given on the right in Fig. 2).
One of the compatible cones with vertex v0 is spanned by the pairs of edges
(v0, v

′
1), (v0, vn). If it admitted an extension to a compatible convex polytope

Q, then the second edge of Q adjacent to v′1 would have to be (v′1, v1), and
the second edge emerging from v1 would have to be (v1, v2), which contradicts
the convexity of Q because (1) does not hold.

Remark 3.18. The momentum polytopes in Figs. 3 and 6 show that the
equivalence of (2) and (5) of Proposition 3.17 do not hold when P does not
meet the Weyl wall in exactly one point. On the other hand, Proposition 3.7
tells us that when P(M) does not meet the Weyl wall in exactly one point,
then the multiplicity free U(2)-manifold M with trivial principal isotropy
group always admits an invariant compatible complex structure, and therefore
the equivalences (2) ⇔ (3) ⇔ (4) hold in general.

Proof of Proposition 3.7. The proposition immediately follows from Lemma
3.10 and the equivalence of (1) and (2) in Proposition 3.17.

4. Triangles

We continue to use the notation in Example 2.1. In this section, we classify
the multiplicity free U(2)-manifolds with trivial principal isotropy group and
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v0
v1

v2v3

v′1v′2

v′3

v0 v1

v2v3

v′1

v′2

v′3

Figure 2: Two polytopes P with v0 of type (3.4) and their x-rays. The left
x-ray satisfies the extension criterion, the right one does not.

triangular momentum polytope. The following lemma determines the Delzant
triangles and will be used to describe the triangles in t+ which can occur as
momentum polytopes of such manifolds.

Lemma 4.1. Let u, v and w ∈ t∗ = Λ ⊗Z R such that

v − u,w − u,w − v ∈ Λ ⊗Z Q.

and let ρ1, ρ2, ρ3 be the primitive elements of Λ such that

R≥0ρ1 = R≥0(v − u),R≥0ρ2 = R≥0(w − u),R≥0ρ3 = R≥0(w − v).

Suppose (ρ1, ρ2) is a basis of Λ. Both pairs (ρ1, ρ3) and (ρ2, ρ3) are bases of
Λ if and only if ρ3 = ρ2 − ρ1.

Proof. The “if” statement is clear. To prove the converse, let a, b ∈ Z such
that ρ3 = aρ1 + bρ2. It follows from the assumption that (ρ1, ρ3) and (ρ2, ρ3)
are bases of Λ, that a, b ∈ {1,−1}. The definitions of ρ1, ρ2, ρ3 then imply
that a = −1 and b = 1.

Recall from Example 2.1 that α = ε1 − ε2 is the simple root of U(2).

Proposition 4.2. The triangles in t+ that occur as momentum polytopes of
multiplicity free U(2)-manifolds with trivial principal isotropy group are:
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(1) r(−ε2) + s(ε1 + ε2) + t · conv(0, a1(−ε2) + b1ε1, a2(−ε2) + b2ε1), where
r, t ∈ R>0, s ∈ R, a1, b1, a2, b2 ∈ Z with det

(
a1 a2
b1 b2

)
= 1 and ai + bi ≥ 0

for each i ∈ {1, 2};
(2) s(ε1 + ε2)+ t · conv(0, 
(ε1 + ε2), k(ε1 + ε2)+ ε1), where s ∈ R, t ∈ R>0,

k ∈ Z, 
 ∈ {−1, 1};
(3) s(ε1 + ε2) + t · conv(0, α, jα + ε1), where s ∈ R, t ∈ R>0, j ∈ N;
(4) s(ε1 + ε2) + t · conv(0, α, jα− ε2), where s ∈ R, t ∈ R>0, j ∈ N;
(5) s(ε1 + ε2) + t · conv(0, ε1,−ε2), where s ∈ R, t ∈ R>0.

Proof. Observe that the all the sets in Eqs. (3.2) to (3.5) and the one in
Eq. (3.6) with j = 0 are bases of Λ. The proposition now follows from Propo-
sition 3.3 and Lemma 4.1 once we prove the following claim: if P ⊂ t+ is a
triangle satisfying conditions (2) and (3) of Proposition 3.3 and a is a vertex
of P such that 〈α∨, a〉 = 0 and

{ρa1, ρa2} = {jα + ε1, jα− ε2} for some j ∈ N,

then j = 0. We may assume that ρa1 = jα+ε1 and ρa2 = jα−ε2. Let b, c be the
other two vertices of P, such that R≥0(b−a) = R≥0ρ

a
1 and R≥0(c−a) = R≥0ρ

a
2

and write ρ for the primitive element of Λ on the ray R≥0(c− b). Since (ρ, ρa1)
is a basis of Λ by condition (3) of Proposition 3.3, there exist m,n ∈ Z such
that ρa2 = mρ + nρa1. Using that (ρ, ρa2) is also a basis of Λ it follows that
n ∈ {−1, 1}. As ρa2 belongs to the cone {pρ + qρa1 : p, q ∈ R≥0} we obtain
n = 1 and m > 0. Consequently mρ = ρa2 − ρa1 = −(ε1 + ε2). As ρ ∈ Λ it
follows that ρ = −(ε1 + ε2). Using once more that (ρ, ρa1) is a basis of Λ it
follows that j = 0, which completes the proof of the claim.

For each triangle in Proposition 4.2, Knop’s Theorem 2.9 guarantees the
existence of a multiplicity free Hamiltonian U(2)-manifold whose momentum
polytope is that triangle. Theorem 4.3 below gives an explicit description of
these manifolds. Propositions 4.5 to 4.8 and 4.10 provide the Hamiltonian
structures.

Theorem 4.3. Let Q be one of the triangles listed in Proposition 4.2 and
let M be the (up to isomorphism) unique multiplicity free U(2)-manifold with
P(M) = Q and trivial principal isotropy group. Then:

(a) M is U(2)-equivariantly diffeomorphic to the corresponding manifold
listed in the second column of Table 2.

(b) M is isomorphic (as a Hamiltonian U(2)-manifold) to the corresponding
manifold listed in the second column of Table 2 equipped with the Hamil-
tonian structure described in the proposition listed in the last column of
Table 2.
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Table 2: Multiplicity free U(2)-manifolds M with trivial principal isotropy
group for which P(M) is a triangle, as asserted in Theorem 4.3. The cases
are numbered as in Proposition 4.2

Case M as U(2)-manifold M as GL(2)-variety Prop.

(1)

U(2) ×T P(V ),
where V = C ⊕ C−δ1 ⊕ C−δ2 ,
with δ1 = a1(−ε2) + b1ε1,
δ2 = a2(−ε2) + b2ε1,
a1, b1, a2, b2 ∈ Z as in
Proposition 4.2(1)

GL(2) ×B− P(V ) 4.8

(2) P

(
(C2 ⊗ Cdet−(k+1) ) ⊕ Cdet−� ⊕ C

)
,

where k ∈ Z, � ∈ {−1, 1}.
idem 4.5

(3) U(2) ×T P(C2 ⊕ C−jα),
where j ∈ N. GL(2) ×B− P(C2 ⊕ C−jα) 4.6

(4) U(2) ×T P((C2)∗ ⊕ C−jα),
where j ∈ N. GL(2) ×B− P((C2)∗ ⊕ C−jα) 4.7

(5)
SO(5)/[SO(2) × SO(3)],
where U(2) acts through
U(2) ↪→ SO(4) ⊂ SO(5)

SO(5,C)/P ,
where P ⊂ SO(5,C) is the
minimal standard parabolic
assoc. to the short simple root,
GL(2) acts through
GL(2) ↪→ SO(4,C) ⊂ SO(5,C).

4.10

C always stands for the trivial representation; B− is defined in Eq. (2.17).
C

2 stands for the defining representation of GL(2) or its restriction to U(2), T or B−.

(c) M has an invariant compatible complex structure J such that the com-
plex manifold (M,J), equipped with the action of GL(2) that is the com-
plexification of the U(2)-action, is GL(2)-equivariantly biholomorphic to
the corresponding GL(2)-variety listed in the third column of Table 2.

Proof. In each proposition listed in the fourth column of Table 2, we define
a structure of multiplicity free U(2)-manifold on the smooth complex GL(2)-
variety M listed in the third column such that

• the momentum polytope of M is the corresponding triangle of Propo-
sition 4.2;

• the U(2)-invariant complex structure that M carries by virtue of being
a smooth complex GL(2)-variety (cf. Proposition 2.13) is compatible
with the symplectic form on M ; and

• M , viewed as a differentiable manifold, is U(2)-equivariantly diffeomor-
phic to the manifold listed in the second column of Table 2.

Since, in each case, the U(2)-action on M has a trivial principal isotropy
group, all the assertions now follow from part (a) of Knop’s Theorem 2.9
and, for assertion (c), also from basic facts about the complexification of
actions (see, e.g., [Hei91, §1.4]).
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We will make use of the following standard fact, which follows directly
from the definitions, taking into account that ε1 + ε2 ∈ t∗ ⊂ u(2)∗ is a fixed
point for the coadjoint action of U(2).

Lemma 4.4. Let (M,ωM , μM ) be a compact Hamiltonian U(2)-manifold with
momentum polytope Q. If s ∈ R, t ∈ R>0, then

μs,t
M := tμM + s(ε1 + ε2)

is a momentum map for the symplectic form tωM on M and the momentum
polytope of the Hamiltonian U(2)-manifold (M, tωM , μs,t

M ) is

s(ε1 + ε2) + t · Q.

Furthermore, if (M,ωM , μM ) is multiplicity free, then so is (M, tωM , μs,t
M )

The next proposition gives the multiplicity free U(2)-manifold associated
to the momentum polytope (2) of Proposition 4.2. In what follows, we will
write e1, e2 for the standard basis of C2.

Proposition 4.5. Let k ∈ Z, 
 ∈ {−1, 1}. Let V be the U(2)-representation

V := (C2 ⊗Cdet−(k+1))⊕Cdet−� ⊕C ∼= V (�1 − (k+ 1)�2)⊕V (−
�2)⊕V (0).

(a) The projective space P(V ), equipped with the Fubini-Study symplectic
form and the momentum map μP(V ) of Example 2.2, is a multiplicity
free U(2)-manifold with trivial principal isotropy group.

(b) The T -fixed points in P(V ) are

x1 := [(e1 ⊗ 1) ⊕ 0 ⊕ 0], x2 := [(e2 ⊗ 1) ⊕ 0 ⊕ 0],
x3 := [0 ⊕ 1 ⊕ 0], x4 := [0 ⊕ 0 ⊕ 1]

and their images under μP(V ) are (in the same order)

(4.1) k(ε1 + ε2) + ε2, k(ε1 + ε2) + ε1, 
(ε1 + ε2), 0.

(c) The momentum polytope of (P(V ), μP(V )) is the triangle

conv(0, 
(ε1 + ε2), k(ε1 + ε2) + ε1)

in case (2) of Proposition 4.2.
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(d) If s ∈ R, t ∈ R>0, then

μs,t
P(V ) := tμP(V ) + s(ε1 + ε2)

is a momentum map for the symplectic form tωP(V ) on P(V ) and the
momentum polytope of the multiplicity free U(2)-manifold (P(V ), μs,t

P(V ))
is the triangle

s(ε1 + ε2) + t · conv(0, 
(ε1 + ε2), k(ε1 + ε2) + ε1)

of case (2) in Proposition 4.2.

Figure 3: The triangle in part (d) of Proposition 4.5 for k = 2, 
 = 1.

Proof. We begin with (a). It follows from Example 2.2 that (P(V ), μP(V )) is
a Hamiltonian U(2)-manifold. A computation shows that the only element of
U(2) that fixes

[(e1 ⊗ 1) ⊕ 1 ⊕ 1] ∈ P(V )

is the identity, which implies that the principal isotropy group of the U(2)-
action on P(V ) is trivial. Since P(V ) is compact and connected, it follows
from Eq. (2.13) that (P(V ), μP(V )) is multiplicity free.

To show (b), we first observe that all the T -weight spaces in V have
dimension 1. This implies that the T -fixed points in P(V ) are exactly the
lines spanned by T -eigenvectors in V , which shows the first assertion in (b).
It follows that μ(xi) ∈ t∗ ∼= (k∗)T for every i ∈ {1, 2, 3, 4}. We now use
Example 2.2 to compute μP(V )(x1). Let ξ ∈ t. Since v := e1 ⊗ 1 ⊕ 0 ⊕ 0 ∈ V
has T -weight γ := ε1 − (k + 1)(ε1 + ε2) we have ξ · (v) = 2π

√
−1γ(ξ)v which
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implies that μP(V )(x1)(ξ) = −γ(ξ), that is, μP(V )(x) = −γ, as claimed. The
computations of μP(V )(x2), μP(V )(x3) and μP(V )(x4) are analogous.

We turn to (c). Since

μP(V )(x2) = k(ε1 + ε2) + ε1

is the only weight in (4.1) that belongs to the interior of t+, it is the only
vertex of P(M) in the interior of t+, thanks to Theorem 2.3(a).

In order to apply part (b) of Theorem 2.3, we next show that the T -
weights in the symplectic slice Nx2 of P(V ) at x2 are

Πx2 = {k(ε1 + ε2) + ε1, (k − 
)(ε1 + ε2) + ε1}.

Indeed, as P(V ) comes with an invariant complex structure which is com-
patible with its Fubini-Study symplectic form by construction, we have the
following isomorphisms of T -modules

Nx2
∼= Tx2P(V )/Tx2(K · x2) = Tx2P(V )/Tx2P(C2 ⊗ Cdet−(k+1) ⊕ 0 ⊕ 0)
∼= C(k−�)(ε1+ε2)+ε1 ⊕ Ck(ε1+ε2)+ε1 .

Since the extremal rays

μP(V )(x2)−R≥0(k(ε1 + ε2) + ε1) and μP(V )(x2)−R≥0((k− 
)(ε1 + ε2) + ε1)

of the cone μP(V )(x2)− cone Πx2 intersect the wall of the Weyl chamber t+ in
the points 0 and 
(ε1 + ε2) it follows from part (b) of Theorem 2.3 that

P(P(V )) = conv(0, 
(ε1 + ε2), k(ε1 + ε2) + ε1)

as claimed.
Part (d) follows from part (c) and Lemma 4.4.

We now describe the multiplicity free U(2)-manifold associated to the
momentum polytope (3) of Proposition 4.2. Recall from Example 2.1 that
α = ε1 − ε2 is the simple root of U(2) and GL(2).

Proposition 4.6. Let j ∈ N and set

M = GL(2) ×B− P(C2 ⊕ C−jα)

where the group B− of lower triangular matrices in GL(2) acts on P(C2 ⊕
C−jα) through the standard linear action of GL(2) on C2 and with weight
−jα on the 1-dimensional space C−jα.
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(a) The map

U(2) ×T P(C2 ⊕ C−j(ε1−ε2)) → M, [g, [y]] �→ [g, [y]]

is a U(2)-equivariant diffeomorphism.
(b) Let V be the irreducible GL(2)-representation with highest weight jα

and let v ∈ V be a lowest weight vector in V . Then

ιM : M → Y := GL(2) ×B− P(C2 ⊕ V ), [g, [u⊕ z]] → [g, [u⊕ zv]]

is a GL(2)-equivariant closed embedding and

ιY : Y → P(C2) × P(C2 ⊕ V ), [g, [u⊕ v]] �→ ([ge2], [gu⊕ gv])

is a GL(2)-equivariant isomorphism of varieties.
(c) Let ω1 be the Fubini-Study symplectic form on P(C2) and

μ1 : P(C2) → u(2)∗

the associated momentum map as in Example 2.2, ω2 the Fubini-Study
symplectic form on P(C2⊕V ) and μ2 : P(C2⊕V ) → u(2)∗ the associated
momentum map. If ωM is the pullback along ιY ◦ ιM of the symplectic
form ω1 + ω2 on P(C2) × P(C2 ⊕ V ) then ωM is a symplectic form on
M with momentum map

μM = (μ1 + μ2) ◦ ιY ◦ ιM

and (M,μM ) is a multiplicity free U(2)-manifold with trivial principal
isotropy group.

(d) Set n :=
(0 1
1 0

)
∈ U(2). The T -fixed points in M are

x1 := [e, [1 : 0 : 0]], x2 := [n, [1 : 0 : 0]], x3 := [e, [0 : 1 : 0]],
x4 := [n, [0 : 1 : 0]], x5 := [e, [0 : 0 : 1]], x6 := [n, [0 : 0 : 1]]

and their images under μM are (in the same order)

(4.2) −ε1 − ε2, −ε1 − ε2, −2ε2, −2ε1, jα− ε2, −jα− ε1.

(e) The momentum polytope of (M,μM ) is the triangle (−ε1 − ε2) +
conv(0, α, jα + ε1) in case (3) of Proposition 4.2
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(f) If s ∈ R, t ∈ R>0, then

μs,t
M := tμM + (s + t)(ε1 + ε2)

is a momentum map for the symplectic form tωM on M . The momentum
polytope of the multiplicity free U(2)-manifold (M,μs,t

M ) is the triangle

s(ε1 + ε2) + t · conv(0, α, jα + ε1)

of case (3) in Proposition 4.2

Figure 4: The triangle in part (e) of Proposition 4.6 for j = 0, j = 1 and
j = 3.

Proof. Part (a) is just an application of Proposition 2.14.
We proceed to assertion (b). The assertion about ιM follows from the fact

that C−jα → V : z �→ zv is a B−-equivariant injective linear map. The claim
about ιY is a standard fact; see, e.g., [Tim11, Lemma 2.3].
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The assertion in (c) that (M,ωM , μM ) is a Hamiltonian U(2)-manifold
follows from standard and well-known facts about Hamiltonian actions. Fur-
thermore, a straightforward computation shows that the isotropy group U(2)x
of (for example) x = [e, [1 : 1 : 1]] ∈ M is trivial, which implies that the prin-
cipal isotropy group is trivial as well. It now follows from Eq. (2.13) and from
the fact that M is compact and connected, that M is a multiplicity free.

To prove (d) we will use Example 2.2. A straightforward calculation shows
that the listed points are the six T -fixed points in M . It follows that their im-
ages under μM lie in t∗ ∼= (k∗)T . Let ξ ∈ t. We begin by computing μM (x1)(ξ).
First off,

ιY ◦ ιM (x1) = ([e2], [e1 ⊕ 0]).

Since e2 has weight ε2 and e1 has weight ε1, we have ξ · e2 = 2π
√
−1ε2(ξ)e2

and ξ · (e1 ⊕ 0) = 2π
√
−1ε1(ξ)(e1 ⊕ 0) which implies that

μ1([e2])(ξ) = −ε2(ξ) and μ2([e1 ⊕ 0])(ξ) = −ε1(ξ).

The claimed equality μM (x1) = −ε1 − ε2 follows.
Similar elementary computations yield the images of x2 through x6 under

μM , using

ιY ◦ ιM (x2) = ([e1], [e2 ⊕ 0]), ιY ◦ ιM (x3) = ([e2], [e2 ⊕ 0]),
ιY ◦ ιM (x4) = ([e1], [e1 ⊕ 0]),
ιY ◦ ιM (x5) = ([e2], [0 ⊕ v]), ιY ◦ ιM (x6) = ([e1], [0 ⊕ nv])

and
ξ · v = 2π

√
−1(−jα)(ξ)v, ξ · nv = 2π

√
−1(jα)(ξ)nv,

which hold because v has weight −jα and nv has weight jα.
We turn to (e). Since

u := μM (x3) = −2ε2 and w := μM (x5) = jα− ε2

are the only weights in (4.2) that belong to the interior of t+, they are the
only possible vertices of P(M) in the interior of t+, thanks to Theorem 2.3(a).
In order to apply part (b) of Theorem 2.3, we next show that the T -weights
in the symplectic slice Nx3 of M at x3 are

Πx3 = {α,−jα− ε2}
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whereas those in the symplectic slice Nx5 at x5 are

Πx5 = {jα + ε1, jα + ε2}.

Indeed, as M comes with an invariant complex structure which is compatible
with ωM by construction, we have the following isomorphisms of T -modules

Nx3
∼= Tx3M/Tx3(K · x3) ∼= T[0:1:0]P(C2 ⊕ C−jα) ∼= Cε1−ε2 ⊕ C−jα−ε2

Nx5
∼= T[0:0:1]P(C2 ⊕ C−jα) ∼= Cε1+jα ⊕ Cε2+jα

Since the two weights in Πx3 are linearly independent, Theorem 2.3(b) implies
that x3 is a vertex of P(M), and the same holds for x5. As

w − (jα + ε2) = u and u − α = w − (jα + ε1) = −ε1 − ε2

it also follows from part (b) of Theorem 2.3 that −ε1−ε2 is the only remaining
vertex of P(M), and we have proven that

P(M) = conv(−ε1 − ε2, u,w),

as required.
Finally, assertion (f) follows from Lemma 4.4.

With proofs similar to that of Proposition 4.6, one establishes the follow-
ing descriptions of the U(2)-manifolds associated to the triangles (4) and (1)
of Proposition 4.2.

Proposition 4.7. Let j ∈ N and set

M = GL(2) ×B− P((C2)∗ ⊕ C−jα)

where the group B− of lower triangular matrices in GL(2) acts on P((C2)∗ ⊕
C−jα) through the linear action of GL(2) on (C2)∗ dual to the standard action
on C2 and with weight −jα on the 1-dimensional space C−jα.

(a) The map

U(2) ×T P((C2)∗ ⊕ C−j(ε1−ε2)) → M, [g, [y]] �→ [g, [y]]

is a U(2)-equivariant diffeomorphism.
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(b) Let V be the irreducible GL(2)-representation with highest weight jα
and let v ∈ V be a lowest weight vector in V . Then

jM : M → P(C2) × P((C2)∗ ⊕ V ), [g, [u⊕ z]] �→ ([ge2], [gu⊕ gzv])

is a GL(2)-equivariant closed embedding.
(c) Let ω1 be the Fubini-Study symplectic form on P(C2) and

μ1 : P(C2) → u(2)∗

the associated momentum map as in Example 2.2, ω2 the Fubini-Study
symplectic form on P((C2)∗ ⊕ V ) and μ2 : P((C2)∗ ⊕ V ) → u(2)∗ the
associated momentum map. If ωM is the pullback along jM of the sym-
plectic form ω1 + ω2 on P(C2)× P((C2)∗ ⊕ V ) then ωM is a symplectic
form on M with momentum map

μM = (μ1 + μ2) ◦ jM

and (M,μM ) is a multiplicity free U(2)-manifold with trivial principal
isotropy group.

(d) The momentum polytope of (M,μM ) is the triangle conv(0, α, jα − ε2)
in case (4) of Proposition 4.2

(e) If s ∈ R, t ∈ R>0, then

μs,t
M := tμM + s(ε1 + ε2)

is a momentum map for the symplectic form tωM on M . The momentum
polytope of the multiplicity free U(2)-manifold (M,μs,t

M ) is the triangle

s(ε1 + ε2) + t · conv(0, α, jα− ε2)

in case (4) of Proposition 4.2.

Proposition 4.8. Let a1, b1, a2, b2 ∈ Z with det
(
a1 a2
b1 b2

)
= 1 and ai + bi ≥ 0

for each i ∈ {1, 2}. Set δ1 = a1(−ε2) + b1ε1, δ2 = a2(−ε2) + b2ε1 and

M = GL(2) ×B− P(C⊕ C−δ1 ⊕ C−δ2)

where the group B− of lower triangular matrices in GL(2) acts on P(C ⊕
C−δ1 ⊕ C−δ2) through its linear action with weight 0, −δ1 and −δ2 on the
1-dimensional spaces C,C−δ1 and C−δ2 , respectively.
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Figure 5: The triangle in part (d) of Proposition 4.7 for j = 3.

(a) The map

U(2) ×T P(C⊕ C−δ1 ⊕ C−δ2) → M, [g, [y]] �→ [g, [y]]

is a U(2)-equivariant diffeomorphism.
(b) For i ∈ {1, 2}, let Vi be the irreducible GL(2)-representation with lowest

weight −δi and let vi be a lowest weight vector in Vi. Then

jM : M → P(C2) × P(C⊕ V1 ⊕ V2),
[g, [z0 ⊕ z1 ⊕ z2]] �→ ([ge2], [z0 ⊕ gz1v1 ⊕ gz2v2])

is a GL(2)-equivariant closed embedding.
(c) Let c ∈ R>0. We write ω1 for the Fubini-Study symplectic form on P(C2)

and
μ1 : P(C2) → u(2)∗

for the associated momentum map as in Example 2.2, ω2 for the Fubini-
Study symplectic form on P(C⊕V1⊕V2) and μ2 : P(C⊕V1⊕V2) → u(2)∗
for the associated momentum map. If ωc

M is the pullback along jM of
the symplectic form cω1 + ω2 on P(C2) × P(C⊕ V1 ⊕ V2) then ωc

M is a
symplectic form on M with momentum map

μc
M = (cμ1 + μ2) ◦ jM

For the author's personal use only.

For the author's personal use only.



Multiplicity free U(2)-actions and triangles 1813

and (M,μc
M ) is a multiplicity free U(2)-manifold with trivial principal

isotropy group.
(d) The momentum polytope of (M,μc

M ) is the triangle c(−ε2) +
conv(0, δ1, δ2) in case (1) of Proposition 4.2

(e) If s ∈ R, r, t ∈ R>0, then

μr,s,t
M := tμ

r/t
M + s(ε1 + ε2) = (rμ1 + tμ2) ◦ jM + s(ε1 + ε2)

is a momentum map for the symplectic form tω
r/t
M = rω1 + tω2 on M .

The momentum polytope of the multiplicity free U(2)-manifold (M,μs,t
M )

is the triangle

r(−ε2) + s(ε1 + ε2) + t · conv(0, δ1, δ2)

of case (1) of Proposition 4.2.

Figure 6: The triangle in part (d) of Proposition 4.8 for c = 1,
(
a1 a2
b1 b2

)
=(1 −1

0 1

)
.

Remark 4.9. The following illustrates a phenomenon already observed in
[Woo98b, Remark 4.4] for the acting group SU(2): in contrast to the toric
case (see [LT97, Remark 9.5]), multiplicity free manifolds for a non-abelian
acting group may admit invariant compatible complex structures that are not
equivariantly isomorphic. As we will now make precise, the complex manifolds
in Propositions 4.6 and 4.7 also carry compatible Hamiltonian structures that
realize triangles in case (1) of Proposition 4.2. For these triangles, the cor-
responding multiplicity free U(2)-manifold admits two compatible invariant
complex structures that are not equivariantly isomorphic: the one in Propo-
sition 4.6 or Proposition 4.7 and the one in Proposition 4.8.
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Indeed, let j,M, μ1, μ2, ω1, ω2, ιY and ιM be as in Proposition 4.6. For
r, t ∈ R>0 and s ∈ R we set

(4.3) μr,s,t
M := [(r + t)μ1 + tμ2] ◦ ιY ◦ ιM + (s + t)(ε1 + ε2).

Then (M, (r + t)ω1 + tω2, μ
r,s,t
M ) is the multiplicity free U(2)-manifold with

trivial principal isotropy group whose momentum polytope is the triangle

r(−ε2) + s(ε1 + ε2) + t · conv(0, α, jα + ε1)
= r(−ε2) + s(ε1 + ε2) + t · conv(0, ε1 − ε2, (j + 1)ε1 − jε2)

in case (1) of Proposition 4.2 with
(
a1 a2
b1 b2

)
=

(1 j
1 j + 1

)
. Observe that, com-

pared to the momentum map μs,t
M of Proposition 4.6(f), the ‘new’ term rμ1 in

μr,s,t
M of Eq. (4.3) just causes the ‘old’ momentum polytope to be translated

by r(−ε2):

P(M,μr,s,t
M ) = P(M,μs,t

M ) + r(−ε2).

That the invariant compatible complex structure in Proposition 4.6 on this
Hamiltonian manifold (M,μr,s,t

M ) is not U(2)-equivariantly isomorphic to the
one in Proposition 4.8 can be seen as follows. If they were, then the complex
GL(2)-manifolds in the two propositions would be GL(2)-equivariantly iso-
morphic (see, e.g., [Hei91, §1.4]), but this is not the case: the unique open
GL(2)-orbit of the complex manifold GL(2) ×B− P(C2 ⊕ C−jα) from Propo-
sition 4.6 is

GL(2) · [e, [e1 ⊕ 1]] ∼= GL(2)
/{(

zj 0
0 zj+1

)
: z ∈ C×

}
,

whereas the unique open GL(2)-orbit of GL(2) ×B− P(C ⊕ C−α ⊕ C−jα−ε1)
from Proposition 4.8 is

GL(2) · [e, [1 ⊕ 1 ⊕ 1]] ∼= GL(2)
/{(

1 0
a 1

)
: a ∈ C

}
.

Similarly, if j,M, μ1, μ2, ω1, ω2, ιY and ιM are now as in Proposition 4.7;
r, t ∈ R>0; s ∈ R and we set

μr,s,t
M := [(r + t)μ1 + tμ2] ◦ ιY ◦ ιM + s(ε1 + ε2),
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then (M, (r + t)ω1 + tω2, μ
r,s,t
M ) is the multiplicity free U(2)-manifold with

trivial principal isotropy group whose momentum polytope is the triangle

r(−ε2) + s(ε1 + ε2) + t · conv(0, α, jα− ε2)
= r(−ε2) + s(ε1 + ε2) + t · conv(0, ε1 − ε2, jε1 − (j + 1)ε2)

in case (1) of Proposition 4.2 with
(
a1 a2
b1 b2

)
=

(
j + 1 1
j 1

)
. That the invariant

compatible complex structures on M from Proposition 4.7 and Proposition 4.8
are not equivariantly isomorphic can be shown exactly as in the previous case.

Finally, we describe the multiplicity free U(2)-manifold associated to the
momentum polytope (5) of Proposition 4.2.

Proposition 4.10. Let

M = SO(5)/[SO(2) × SO(3)]

be the Grassmannian of oriented 2-planes in R5. We give M the structure
of a Hamiltonian SO(5)-manifold by viewing it as the coadjoint orbit through
the short roots of SO(5), with respect to the maximal torus S =

{(
A 0 0
0 B 0
0 0 1

)
:

A,B ∈ SO(2)
}
. We define an embedding ι : U(2) ↪→ SO(5) by embedding

SO(4) into SO(5) as the upper left block and identifying U(2) with the cen-
tralizer of {(A 0

0 A ) : A ∈ SO(2)} in SO(4) in such a way that the restriction
of ι to T is an isomorphism from T onto S that identifies the shorts roots of
SO(5) with the four weights −ε1,−ε2, ε1, ε2 ∈ Λ of U(2).

Let μM : M → u(2)∗ be the momentum map and ωM be the symplectic
form of the restricted Hamiltonian U(2)-action on M induced by the inclusion
ι : U(2) ↪→ SO(5).

(a) (M,ωM , μM ) is a multiplicity free U(2)-manifold with trivial principal
isotropy group whose momentum polytope is the triangle conv(0, ε1,−ε2),
in case (5) of Proposition 4.2.

(b) If s ∈ R and t ∈ R≥0, then (M, tωM , tμM + s(ε1 + ε2)) is a multiplicity
free U(2)-manifold with trivial principal isotropy group whose momen-
tum polytope is the triangle

s(ε1 + ε2) + t · conv(0, ε1,−ε2),

of case (5) of Proposition 4.2.
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Proof. Since (b) follows from (a) and Lemma 4.4, we only need to prove
part (a). Let r : u(2)∗ → t∗ be the restriction map. Then μT = r ◦ μM is the
momentum map of the restricted T -action on M . The momentum polytope
PT (M) = μT (M) of this restricted T -action was computed in [CK13, Example
4.2] to be the following square:

ε1−ε1

−ε2

ε2

(4.4)

In this picture, the lines (also the ones in the interior of the momentum image)
are the images under μT of the points of M with nontrivial T -isotropy, and
the dots are the images of the four T -fixed points. Our goal is to show that
the U(2)-momentum polytope P(M) of M is

ε1

−ε2

(4.5)

and that M is a multiplicity free U(2)-Hamiltonian manifold with trivial
principal isotropy group.
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By Theorem 2.3(a), any vertex of P(M) that lies in the interior of t+ is the
image under μM of a T -fixed point. Together with Proposition 2.5 it follows
that ε1 and −ε2 are the only two vertices of P(M) in t+. In order to show that
P(M) is the asserted triangle, we now only need to prove that the two points
where the boundary of the T -momentum image PT (M) intersects the Weyl
wall do not lie in P(M). Let q be the T -fixed point on M with μM (q) = ε1.
Then the orbit U(2) · q ∼= U(2)/T ∼= S2 is, via the T -momentum map μT ,
mapped onto the line segment between ε1 and ε2. This implies that the weights
of the T -representation on the symplectic slice Nq in q are given by the direc-
tions of the other two rays emerging from ε1 in (4.4). Then Theorem 2.3(b)
implies that P(M) has the desired form locally around ε1. Together with
similar considerations near −ε2, this forces P(M) to be globally as claimed.

Next we show the claim that M contains points with trivial isotropy.
A neighborhood of q is U(2)-equivariantly diffeomorphic to U(2) ×T Nq (see
Remark 2.4(b)). Note that T acts on the symplectic slice Nq with two weights
which form a basis of the weight lattice Λ, because they are a long and a short
root of SO(5). The claim follows. Since M has dimension 6, Eq. (2.13) now
yields that M is a multiplicity free U(2)-manifold.

5. Diffeomorphism types

In this final section, we discuss the nonequivariant diffeomorphism types of the
manifolds in Table 2. We start off with a brief review of some standard facts
in the theory of (real or complex) vector bundles V → E

π→ Sk with structure
group G ⊂ GL(V ) over spheres (for details, see [Hat17, Section 1.2]). Denote
by N and S the north and south pole of the k-sphere Sk (k ≥ 2), respectively.
Then both U− := Sk \ {N} and U+ = Sk \ {S} are homeomorphic to the
open k-disk Uk and therefore contractible, so there are trivializations

φ− : π−1(U−) → U− × V, φ+ : π−1(U+) → U+ × V.

Now, as U− ∩ U+ ∼= Sk−1 × (−1, 1), we obtain a map

φ+ ◦ φ− : Sk−1 × (−1, 1) × V → Sk−1 × (−1, 1) × V,

which is of the form (x, t, v) �→ (x, t, γ(x, t)(v)), for a map γ : Sk−1×(−1, 1) →
G. In particular, the map

γE : Sk−1 → G, γE(x) = γ(x, 0),

defines an element [γE ] in the set [Sk−1, G] of free homotopy classes of maps
from Sk−1 to G.
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Conversely, given an element [γ] ∈ [Sk−1, G] represented by γ : Sk−1 → G,
we can define a bundle V → Eγ

π→ Sk by gluing two copies of Dk ×V , where
Dk is the closed k-disk, together via γ. More precisely, writing D− × V and
D+ × V for the two copies of Dk × V , we define

Eγ := (D− × V ) ∪φγ (D+ × V ),

where φγ : ∂D− × V → ∂D+ × V is given by φγ(x, v) = (x, γ(x)(v)). This is
called the clutching construction and γ the clutching function. It turns out
that the isomorphism class of this bundle only depends on the free homo-
topy class of γ and that this construction inverts the assignment [E] �→ [γE ]
described above. In summary, we have the following

Theorem 5.1. The map from [Sk−1, G] to the set of isomorphism classes of
vector bundles V → E → Sk with structure group G ⊂ GL(V ), which is given
by mapping [γ] ∈ [Sk−1, G] to the isomorphism class of the bundle Eγ, is a
bijection. Its inverse is given by the assignment [E] �→ [γE ].

Recall that the set Vect1(S2) of isomorphism classes of complex line bun-
dles over S2 is an abelian group with respect to the tensor product operation.
Theorem 5.1 gives us the bijection Vect1(S2) → [S1,GL(1,C)], [E] �→ [γE ].
Since S1 = U(1) ⊂ GL(1,C) is a deformation retract of GL(1,C) = C× we
can identify [S1,GL(1,C)] with [S1, S1] = π1(S1). Also, by definition, the ten-
sor product of two line bundles E1 and E2 has the clutching function γE1 ·γE2

(multiplying in S1 = U(1)), which makes the assignment

Vect1(S2) → π1(S1) : [E] �→ [γE ]

a group homomorphism and, by Theorem 5.1, a group isomorphism.
We now fix group isomorphisms φ1 : Vect1(S2) → Z and φ2 : π1(S1) → Z.

Such isomorphisms are unique up to sign, but it will turn out that the choice
of sign will not be important in what follows. By abuse of notation, we will
write φ1(E) for φ1([E]) and φ2(γ) for φ2([γ]). Since H2(S2,Z) ∼= Z, φ1(E)
can be understood as the Chern class of the complex line bundle E up to
sign, see e.g. [Hat17, Proposition 3.10].

Lemma 5.2. Let S1 act on S2 by standard rotation and on two copies of C
via weights k1 ∈ Z and k2 ∈ Z, respectively. Consider the corresponding S1-
equivariant line bundle C → E → S2 with weight k1 on the fiber at the south
pole S and k2 on the fiber at the north pole N . Then φ1(E) = ±(k1 − k2),
depending on the chosen φ1.
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Proof. We only have to determine φ2(γ) up to sign, where γ : S1 → S1 is the
clutching function of the line bundle E. Trivializations of E around S and N

look like D2 × C with S1-actions

s · (z1, z2) = (sz1, s
k1z2) and s · (z1, z2) = (sz1, s

k2z2),

respectively. The isomorphism between the boundaries of these two trivial-
izations induced by the clutching function γ has to preserve this S1-action,
which gives the condition (now z1 ∈ ∂D2 = S1)

(sz1, γ(sz1)sk2z2) = (sz1, s
k1γ(z1)z2).

This immediately implies that φ2(γ) is ±(k1 − k2), the sign depending on the
choice of φ2.

Theorem 5.3. There are precisely four diffeomorphism types occurring in
Table 2:

(a) the manifolds in case (2) are diffeomorphic to P(C4),
(b) the manifold in case (5) has the diffeomorphism type of the Grassman-

nian of oriented 2-planes in R5,
(c) those manifolds U(2) ×T P(V ) in cases (1), (3) and (4) for which the

first Chern class of the vector bundle V → U(2) ×T V → U(2)/T is
divisible by 3 are diffeomorphic to S2 × P(C3),

(d) those manifolds U(2) ×T P(V ) in cases (1), (3) and (4) for which the
first Chern class of the vector bundle V → U(2) ×T V → U(2)/T is
not divisible by 3 are diffeomorphic to the total space of any non-trivial
P(C3)-bundle over S2.

Proof. As P(C4) is spin and the aforementioned Grassmannian is not, these
two manifolds are not diffeomorphic. In addition, both of them are not dif-
feomorphic to the manifolds occurring in cases (1), (3) and (4) of Table 2 due
to the equality of Euler characteristics χ(M) = χ(MT ) which holds for any
torus action on a compact manifold M , see [Kob58]. The real task here is to
distinguish between the manifolds in cases (1), (3) and (4).

Let M = U(2) ×T P(V ) be one of these manifolds. As the projective
bundle of the vector bundle E = U(2) ×T V of rank 3 over U(2)/T ∼= S2, it
can be described by a clutching function γ : S1 → PGL(3,C), which comes
from the clutching function γ̃ of E. Because E is the sum L1 ⊕ L2 ⊕ L3
of three line bundles, we have γ̃ = (γ1, γ2, γ3) : S1 → U(1)3 ⊂ U(3), where
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γ1, γ2 and γ3 are the clutching functions of L1, L2 and L3. The class of γ̃ in
π1(U(3)) = π1(GL(3,C)) = Z is now given by

φ2(det(γ̃)) = φ2(γ1) + φ2(γ2) + φ2(γ3).

It follows that the class of γ in [S1,PGL(3,C)] = π1(PGL(3,C)) = Z/3Z is
determined by the value

f(γ) := [φ2(γ1 · γ2 · γ3)] = [φ2(γ1) + φ2(γ2) + φ2(γ3)] ∈ Z/3Z,

since the fibration Z(GL(3,C)) → GL(3,C) → PGL(3,C) induces a short
exact sequence

0 → π1(Z(GL(3,C))) → π1(GL(3,C)) → π1(PGL(3,C)) → 0.

Note that f(γ) is equal up to sign to φ1(L1) + φ1(L2) + φ1(L3) modulo 3,
where the Li are the line bundles from above and φ1 is the fixed isomorphism
Vect1(S2) → Z.

We only need to check that the total spaces E1 and E−1 of the P(C3)-
bundles with f(γ+) = 1 and f(γ−) = −1, where γ+ : S1 → PGL(3,C) and
γ− : S1 → PGL(3,C) are the clutching functions of E1 and E−1, are diffeo-
morphic, and that E1 and S2 ×P(C3) are not (note that all these statements
do not depend on the isomorphisms φ1 and φ2 we have chosen).

Because the vector bundles of E±1 are sums of three line bundles, the first
statement follows immediately from the fact that two complex line bundles
over S2, whose first Chern classes differ only in their sign, are C-antilinearly
isomorphic (as a change in sign of the first Chern class corresponds to a
change in sign of the complex structure on the fiber). The second statement
is true as E1 and S2×P(C3) are not even homotopy equivalent. Indeed, by e.g.
[Hus94, §17.2], the cohomology ring of E1 is Z[x, y]/(x2, y3 + xy2), where x
represents a generator of H∗(S2) and y represents a generator of H∗(P(C3)),
whereas H∗(S2 × P(C3)) = Z[x, y]/(x2, y3). These two cohomology rings are
not isomorphic since any graded ring isomorphism

Z[x, y]/(x2, y3) → Z[x, y]/(x2, y3 + xy2)

would have to send x to ±x and therefore y to ax ± y for some a ∈ Z, but
y3 = 0 on the left, whereas (ax± y)3 = 3axy2 ± y3 �= 0 on the right.

Remark 5.4. In order to determine the first Chern class modulo 3 of the
C3-bundle E giving the P(C3)-bundle M of case (1), (3) or (4) in Table 2, it
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is sufficient to look at the directions λ1 = a1ε1 + b1ε2 and λ2 = a2ε1 + b2ε2 in
which the edges of the momentum polytope P(M) emerge at some vertex v.
Indeed, a neighborhood of the U(2)-orbit Ψ−1(v) in M looks like the bundle
L′ = U(2) ×T (C−λ1 ⊕ C−λ2). Now consider the action of U(1) × {e} ⊂ T ⊂
U(2) on L′ and note that the weights of that circle action on the fiber over
eT ∈ U(2)/T are given by −a1 and −a2, whereas the weights in the fiber over
the other T -fixed point in U(2)/T are −b1 and −b2. Using Lemma 5.2, we see
that the first Chern class of L′ is (up to sign) equal to −a1−a2 +b1 +b2. Now
observe that P(L′ ⊕ C) = P(E) = M , which implies that M is diffeomorphic
to S2 × P(C3) if and only if a1 + a2 − b1 − b2 is a multiple of 3.
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