Bart Van Steirteghem
Bart Van Steirteghem  
Department of Mathematics
Medgar Evers College, CUNY
1650 Bedford Ave, Brooklyn NY 11225, USA
Phone (+1)718-270-6429
Office L-05-V in AB1
bartvs at mec dot cuny dot edu
Doctoral Faculty
Mathematics Program
The Graduate Center, CUNY
365 Fifth Avenue, New York, NY 10016, USA
Phone (+1)212-817-8557
Office 4302
Department Mathematik (LS Knop)
FAU Erlangen-Nürnberg
Cauerstr. 11, D-91058 Erlangen
Phone (+49) 9131 85-67022
Office 01.322
bartvs at math dot fau dot de

Current teaching
Masterseminar Sphärische Varietäten (Erlangen)

Combinatorial characterization of the weight monoids of smooth affine spherical varieties [article, arXiv] (with Guido Pezzini), Transactions of the American Mathematical Society, to appear.
On some families of smooth affine spherical varieties of full rank [article, arXiv] (with Kay Paulus and Guido Pezzini), Acta Mathematica Sinica, English Series 34 (2018), 563-596.
Nilpotent matrices having a given Jordan type as maximum commuting nilpotent orbit [article, arXiv] (with A. Iarrobino, L. Khatami and R. Zhao), Linear Algebra and its Applications 546 (2018), 210-260.
Equivariant degenerations of spherical modules: part II [article, arXiv] (with Stavros Papadakis), Algebras and Representation Theory 19 (2016), 1135-1171.
The moduli scheme of affine spherical varieties with a free weight monoid [article, arXiv] (with Paolo Bravi), International Mathematics Research Notices 2016 (2016), 4544-4587.
Equivariant degenerations of spherical modules for groups of type A [article, arXiv] (with Stavros Papadakis), Annales de l'Institut Fourier 62 (2012), 1765-1809
Propositional systems, Hilbert lattices and generalized Hilbert spaces [chapter, pdf] (with Isar Stubbe), Handbook of Quantum Logic and Quantum Structures (2007), 477-523, edited by D. Gabbay, D. Lehmann and K. Engesser, Elsevier
Classification of smooth affine spherical varieties [article, arXiv] (with Friedrich Knop), Transformation Groups 11 (2006), 495-516

Reviews of my papers on MathSciNet, including older ones

Various interpretations of the root system(s) of a spherical variety [pdf], extended abstract for Oberwolfach Mini-Workshop on Spherical Varieties and Automorphic Representations (12 May - 18 May 2013), Oberwolfach Reports 10 (2013), 1464-1467 [full report]

Algebraic transformation groups: the mathematical legacy of Domingo Luna, Università La Sapienza, 28-30 October 2019
Geometry and Representation Theory of Algebraic Groups, Physikzentrum Bad Honnef, 5-9 March 2018

Medgar Evers College Mathematics Colloquium
Study Group on Toric and Spherical Varieties
Study Group on Hodge Theory and Complex Geometry
Medgar Evers College Math Club
Emmy Noether Seminar (2018-19)

A hometown quote: "Dei Ingelse zèn zot. Ze schraive: street. Ze zegge: striet, en ze willen hemme: strôt." (De Standaard, 30 maart 2001)
Bart Van Steirteghem / 29 March 2019